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Abstract

Theoretical studies have shown that cooperation tends to evolve when interacting individuals have positively correlated phenotypes. In

the present article, we explore the situation where this correlation results from information exchange between social partners, and

behavioral flexibility. We consider the game ‘continuous iterated prisoner’s dilemma’. The level of cooperation expressed by individuals

in this game, together with their ability to respond to one another, both evolve as two aspects of their behavioral strategy. The conditions

for a strategy to be evolutionarily stable in this game are degenerate, and earlier works were thus unable to find a single ESS. However, a

detailed invasion analysis, together with the study of evolution in finite populations, reveals that natural selection favors strategies

whereby individuals respond to their opponent’s actions in a perfectly mirrored (i.e., correlated) fashion. As a corollary, the overall

payoff of social interactions (i.e., the amount of cooperation) is maximized because couples of correlated partners effectively become the

units of selection.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A common metaphor for studying the evolution of
cooperation is the Prisoner’s dilemma, a game with two
strategies: cooperate or defect. In this game, defection
yields a larger payoff than cooperation, and should hence
be favored by natural selection. When this game is played
between two individuals repeatedly, however (the Iterated
Prisoner’s Dilemma; IPD), a strategy called tit-for-tat is a
potential outcome of evolution (Trivers, 1971; Axelrod,
1984; Nowak and Sigmund, 1992). Individuals using this
strategy start by cooperating and then express, in each
round, the action expressed by their partner in the previous
round.

In nature, social interactions are rarely all or nothing,
and the IPD metaphor has been extended into a continuous
version (Wahl and Nowak 1999a,b; Killingback and
Doebeli, 2002). In each round, individuals offer a
quantitative amount of resources to their partner. This
comes at a cost to them but benefits the recipient. Their
partner then responds with a counter offer, and the game is
iterated back-and-forth for some, potentially indefinite,
period of time. Each player accrues a payoff during each
round of the game, as a function of the two players’ actions
in that round.
It has been difficult to obtain a comprehensive picture of

evolution in the continuous IPD because many of the
available results stem from computer simulations. A recent
review (Doebeli and Hauert, 2005) notes that the results of
these previous analyses are complex and varied, but they
nevertheless were able to identify some conditions under
which cooperation appears to evolve. A complete picture is
still lacking, however, because an evolutionarily stable
strategy has not yet been identified for this game. Here, we

ARTICLE IN PRESS

www.elsevier.com/locate/yjtbi

0022-5193/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jtbi.2007.02.007

�Corresponding author. Laboratoire Éco-Anthropologie et Ethnobio-
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focus on the special case where (i) in choosing their move
for a given round, individuals only make use of the
previous round as a source of information and (ii) the
number of rounds of interaction between individuals is
large and leads to a stable agreement. We demonstrate
that, in these circumstances, the only ESS of the
continuous IPD corresponds to perfect quantitative
reciprocity.

2. Methods

Let us consider a simple social interaction between two
players. Player 1 donates an amount of energy u1 to player
2, which generates a benefit Bðu1Þ but comes at a cost Cðu1Þ,
and vice versa. The payoff for player 1 is w1 ¼ Bðu2Þ�

Cðu1Þ, and that for player 2 is w2 ¼ Bðu1Þ � Cðu2Þ. This

simple game has been previously referred to as the
continuous prisoner’s dilemma (Wahl and Nowak
1999a,b; Killingback and Doebeli, 2002). In the absence
of correlation between players, the evolutionarily stable
strategy is to donate nothing (i.e., cooperation is absent),
because donation only comes at a cost to the individual
expressing it.
Each individual is also characterized by a ‘response rule’,

giving its donation as a function of the donation made by
its partner. When two players interact, they repeatedly
modulate their respective donation according to their
opponent’s past donation, and may ultimately reach a
stable agreement point (Fig. 1a). If the number of
interactions between the two individuals is sufficiently
large, the pre-equilibrium interactions can be neglected,
and the average payoffs obtained by both players are
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Fig. 1. Iteration and the finding of a stable agreement. (a) Successive bouts of interaction between two different players (green and red). Here the green

player makes a first move, which is assessed by the red player and responded to by a ‘countermove’, and so on until a stable agreement point is reached

(black circle). (b) Successive bouts of interaction between two individuals playing the same response rule. The two representations of the rule,

corresponding to each individual, are symmetric of one another along the diagonal. The stable agreement point is on the diagonal, and can be reached only

if the response rule intersects the diagonal with a slope lower than one (lo1Þ. The investment made by each player at this agreement is u. A necessary

relationship must hold between l and u for the response rule to be evolutionary stable (Eq. (2)). (c) Detail of (b) around the agreement point, showing the

effect of a mutant response rule (dark and light red). The resident rule has slope l and the mutant l̂. When a mutant plays against a resident, the mutant

ends up donating uþ d at the stable agreement and the resident uþ ld; when two mutants encounter they both end up donating û.

J.-B. André, T. Day / Journal of Theoretical Biology 247 (2007) 11–2212
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approximately w̄1 ¼ Bðu2Þ � Cðu1Þ and w̄2 ¼ Bðu1Þ � Cðu2Þ,
where the ui correspond to the stable agreement donations
of each player. An alternate, mathematically equivalent,
possibility is to assume that players first undertake a
negotiation phase where information is exchanged, and
truly play the game only once they have reached a stable
agreement (McNamara et al., 1999; Taylor and Day, 2004).
Because the negotiation framework raises the complex
question of contracts, in the remainder of the paper we
focus on the iteration interpretation. We refer to this
paradigm of social interaction as the continuous iterated
prisoner’s dilemma (CIPD). Our aim is to determine how
the response rule is expected to evolve, and thereby to
predict whether or not cooperation is expected to result.

3. Results

3.1. Degeneracy of the ESS condition

Suppose a population consists of a resident type and a
rare mutant type at frequency q. When two resident
individuals encounter, they ultimately reach a stable
agreement where both give the same donation, u, and
receive Prr ¼ BðuÞ � CðuÞ. The slope l of their response
rule around this agreement is called their behavioral
‘responsiveness’. In other words, the resident response
rule, as complex as it may be, is defined by two parameters
only: its slope l and donation level u at the intersection
with the diagonal (see Fig. 1b). The response rule of
mutant individuals is defined by two parameters as well.
However, rather than being defined in absolute terms, it is
in part defined relative to the resident (see Fig. 1c). First,
mutant responsiveness around the diagonal is defined in
absolute terms as l̂. Second, we suppose that mutant
donation, at the stable agreement with a resident, is
increased by a small amount d relative to the usual resident
donation u.

In mixed encounters, when mutant’s deviation, d, is
small, the resident ends up donating approximately uþ ld
at the stable agreement (Fig. 1c). Therefore, the mutant
receives Pmr ¼ Bðuþ ldÞ � Cðuþ dÞ, and the resident
Prm ¼ Bðuþ dÞ � Cðuþ ldÞ. In mutant–mutant interac-
tions, the donation made by each mutant at stable
agreement is less straightforward to derive. However, from
the definition of resident and mutant response rules,
simple algebra shows that a pair of mutants necessarily
donate û ¼ uþ d � ð1� ll̂Þ=ð1� l̂Þ at their stable agree-
ment (Fig. 1c). The payoff obtained by mutants in
mutant–mutant interactions is thus Pmm ¼ BðûÞ � CðûÞ.
Therefore, on average, resident individuals receive a payoff
Pr ¼ ð1� qÞ � Prr þ q � Prm, mutants receive Pm ¼ ð1� qÞ�

Pmr þ q � Pmm, and, to first order in d, the difference
between the two is given by

Pm � Pr ¼ ð1� qÞðlb� cÞ þ qðl̂b� cÞ
1� l

1� l̂

� �
dþOðd2Þ,

(1)

where c � dC=du and b � dB=du are the marginal cost and
benefit arising from an increase in one’s partner’s donation,
and one’s own donation, respectively, evaluated around the
stable agreement reached by residents (uÞ. We assume that
the second derivatives of B and C around this agreement
are such that the second order terms, Oðd2Þ, are negative.
This analysis is valid provided l̂a1, because û is not
defined otherwise (note that l̂ need not be close to lÞ.
Furthermore, the above analysis assumes that when two
identical individuals encounter, they end up reaching a
stable agreement where they both play the same strategy
(where the response rule intersects the diagonal; Fig. 1b).
More generally, however, this is not the only possibility.
There can be more than one agreement on the diagonal, only
one of which is actually reached depending on initial
moves, or there can be no agreement on the diagonal.

The above analysis can be extended to both cases and
the results are unaffected. However, the analysis cannot
be extended to the third case where there is no

stable agreement at all. Our model is therefore restri-
cted to response rules that lead to a stable agreement,
and do not generate a perpetual instability of players’
donations.
According to the usual definition of an evolutionarily

stable strategy (ESS), the resident is a local ESS iff for any
weak-effect mutant there exists a frequency q below which
the mutant is counter-selected (Maynard Smith and Price,
1973). From Eq. (1), and as long as l̂a1, this definition
leads to the simple ESS condition:

lb� c ¼ 0. (2)

Condition 2 is analogous to Hamilton’s rule (Hamilton,
1964), except that correlation between partners is due to
plasticity instead of genetic relatedness. Donations come at
a direct cost to individuals but generate an indirect benefit
via partner responsiveness: each unit of energy � donated to
partner triggers the donation of l� in return. As a result,
donation is large at ESS when responsiveness l is itself
large.
However, in contrast with genetic relatedness, the

phenotypic correlation between partners is not an external
parameter, but is rather one aspect of the social behavior
itself. In this respect, condition 2 is degenerate as there are
typically a continuum of values of l and u that satisfy it: a
behavioral strategy can yield any donation at stable
agreement, and yet be an ESS, as long as a corresponding
responsiveness is exhibited as well. This degeneracy has
been previously observed in continuous games (Taylor and
Day, 2004), and explains why earlier works on the CIPD
were unable to derive a single ESS (Wahl and Nowak,
1999a,b; Killingback and Doebeli, 2002). However, this
finding does not imply that all evolutionarily stable
strategies are equally likely endpoints of evolution.
Next we present three lines of evidence demonstrating
that, out of all possible combinations of l and u satisfying
Eq. (2), it is perfect reciprocity (i.e., l ¼ 1Þ that ultimately
prevails.
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3.2. The effect of mutant–mutant interactions

First of all, the payoff obtained by mutants when playing
against each other can strongly affect their success in a
resident population (see Axelrod, 1984; Nowak and
Sigmund, 1992; Nowak et al., 2004). A thorough analysis
must take into account the full expression of the difference
between mutant and resident payoffs (Eq. (1)), instead of
its limit when mutants become virtually absent. This is
especially important when the resident is an ESS because,
by definition of an ESS, the disadvantage of mutants in
encounters with residents is then a second-order term only
(Eq. (2)). Performing this analysis shows that all but one
ESS combinations of l and u are susceptible to the invasion
by some weak-effect mutants (i.e., mutants with small dÞ.
The ESS condition (lb� c ¼ 0Þ guarantees that the
resident is the best strategy against itself. Therefore, for
any mutant, there exists a frequency below which this
mutant is disfavored (Maynard Smith and Price, 1973).
Yet, in practice, most of the strategies matching this
condition are susceptible to mutant invasion for the
opposite reason: for any arbitrarily small frequency, there
exist some mutants that receive a net advantage at this
frequency. Mathematically, this result stems from the
expression for the difference between mutant and resident
payoffs (Eq. (1)). At any ESS defined by Eq. (2), this
difference is given by Pm � Pr ¼ qðl̂b� cÞð1� lÞ=
ð1� l̂ÞdþOðd2Þ. Therefore, for any arbitrarily small
mutant frequency q, there exist some mutants with a
sufficiently small deviation d such that Pm � Pr40 (i.e., the
mutant is favored by selection). The only exception, and
thus the only strategy that can never be invaded by weak-
effect mutants is the strategy called ‘perfect reciprocity’
with l ¼ 1. This particular ESS leads to a stable agreement
u� satisfying b� c ¼ 0 (Eq. (2)), and therefore it maximizes
the overall payoff of the interaction.

3.3. Perfect reciprocity in finite populations

A second line of evidence stems from an analysis of
evolution in finite populations paralleling previous work on
the iterated prisoner’s dilemma (Nowak et al., 2004). In finite
populations, an ESS can be characterized as a strategy that,
once fixed, results in all other strategies having a fixation
probability that is less than that of a neutral allele (Rousset
and Billiard, 2000; Proulx and Day, 2001; Nowak et al.,
2004). For populations of any finite size, N, the only strategy
that satisfies this stochastic ESS condition in the CIPD is
again perfect reciprocity (see Appendix A1). Thus, among the
infinite number of strategies satisfying Eq. (2), all strategies
except perfect reciprocity are susceptible to the appearance of
mutant alleles that have a selective advantage.

3.4. Perfect reciprocity in simulations

The final line of evidence comes from simulations (see
Appendix A2). We simulated the evolution of linear

response rules, the possible slopes of these rules varying
between �2 and þ2. When the product of the slopes of
each partner’s response rule is either larger than 1 or lower
than �1, the intersection of the two rules is an unstable
agreement. In this case, the stable agreement of the
interaction is reached at the boundary of the space of
possible agreements (see Appendix A2 for details). In the
simulations, like in the mathematical analysis, we could not
consider situations where no stable agreement at all can be
reached.
In simple simulations, we considered the successive

replacement of one strategy by another, according to a
mathematical criterion based on Wahl and Nowak (1999a)
(see Appendix A2). Fig. 2 plots two typical evolutionary
trajectories of l in these simulations, starting from l ¼ �1
and ultimately reaching l ¼ 1. Once the strategy corre-
sponding to perfect reciprocity appears in the population,
it quickly spreads to fixation.
In more complex simulations, we considered the

presence of polymorphism in the population, in a
stochastic individual-based model. We started with perfect
reciprocity as a fixed resident. Just like TFT in the
prisoner’s dilemma, perfect reciprocity is a neutral-ESS:
any mutant response rule that yields the same stable
agreement as perfect reciprocity attains the same
payoff (see also Taylor and Day, 2004). Therefore, at
equilibrium, a range of mutually neutral strategies
are present in the population (results not shown). How-
ever, these simulations reveal that perfect reciprocity
is always stably maintained at an intermediate fre-
quency in the long run, because the emergence of neutral
strategies opens an ecological niche for defectors, which in
turn generate a selective pressure stabilizing perfect
reciprocity.
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Fig. 2. Evolution of responsiveness of linear rules. Two independent

evolutionary paths are presented. Responsiveness evolves via stochastic

replacement of residents by mutants (see Appendix A2). Intercept, r, of
response rules also evolves (not shown). In each turn of the simulation, a

mutation is introduced. In 89% of the cases, the mutation increases l or r
by a small amount drawn from a uniform distribution between �0:01 and

0.01; in 10% the mutant has a totally random phenotype, and in 1% of the

cases the mutant’s strategy is global reciprocation. The benefit and cost

functions are BðuÞ ¼ 2u and CðuÞ ¼ u2, respectively.
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3.5. The ‘mirror rule’

The above analyses reveal that a stable endpoint of
evolution in the CIPD is necessarily a strategy whereby
individuals mirror each other. This condition is local in
that it characterizes players’ behavior when donations are
close to the stable agreement point, but not more globally
(see Appendix A5). However, the simplest way for a player
to meet this local reciprocity condition is to be globally
reciprocating, i.e., always respond to any donation by the
exactly same donation in return, which parallels in a
quantitative way the evolution of reciprocity in discrete
games (Trivers, 1971; Axelrod, 1984; Nowak and Sigmund,
1992). The drawback of such global reciprocation is that it
does not allow players to approach the optimal donation
(u�Þ when starting elsewhere. Hence, the evolution of global
reciprocity also requires the evolution of opting for the
optimal donation on the first move (Wahl and Nowak,
1999a,b). We then call this strategy the ‘mirror rule’.
Consider the mirror rule at frequency f, in competition
with an alternative strategy y. When y interacts with a
mirror rule, y ends up playing û, as does the mirror rule
(by definition). When a y individual plays against another
y, both players end up playing û as well. Therefore, the
average payoff for y is P̂ ¼ BðûÞ � CðûÞ, and the average
payoff of the mirror rule is P ¼ f � ½Bðu�Þ � Cðu�Þ�þ

ð1� f Þ � ½BðûÞ � CðûÞ�. Since u� maximizes BðuÞ � CðuÞ, P

is always larger than P̂. As a result, when starting from any
initial frequency, f, the mirror rule rises to fixation.
Therefore, individuals playing this rule not only resist
invasion by any weak-effect mutant, but they resist
invasion by all mutants, regardless of their starting
frequency. Note that, as a result, when the mirror rule is
allowed to appear then no other strategy is evolutionarily
stable according to the usual ESS definition.

3.6. Reciprocity via ‘adjustment rules’

We also considered the more general case where
individuals are able to choose their next donation as a
function of both their opponent’s and their own past
donation (Nowak and Sigmund, 1993), by examining
response rules of the form u0s ¼ f sðus; upÞ, where us and up

are the donations made by a focal individual and her
partner. The same results hold in this case as well: full
behavioral correlation emerges between social partners and
causes social interactions to be optimized (see Appendix
A3). Interestingly, a continuum of response rules result in
the display of such correlated behavior, the simplest of
which consists in donating the optimum amount u� on the
first move, and then adjusting subsequent moves as a
function of the divergence with partner, i.e., following:

u0s ¼ us þ gðup � usÞ, (3)

where partner-responsiveness g can take any strictly
positive value between zero and one. These rules range
from responding exclusively to partner’s previous donation

(g ¼ 1, which corresponds to the mirror rule), to respond-
ing almost exclusively to one’s own previous donation
(g! 0Þ. Interestingly, none of these rules correspond to
the special case where individuals respond only to their
past payoff (Killingback and Doebeli, 2002). In fact,
payoff-responding strategies are always susceptible to
invasion by at least some weak-effect mutants (see
Appendix A3).
We call ‘adjustment rules’ the family of responsive

behaviors defined by Eq. (3). Individuals playing these
rules do not respond to each move of their opponent by the
exact same move, and therefore adjustment rules do not
cause mirroring behaviors per se. However, in all cases,
individuals playing adjustment rules eventually end up
making the same donation as their partner. The mirroring
aspect of their behavior thus concerns the stable agree-
ments they reach, and not their proximate behavioral
responses.
Although any adjustment rule can resist invasion by

mutants of any frequency, natural selection is likely to
distinguish among them once error is introduced (see
Appendix A.5). With high partner-responsiveness g,
players essentially choose their next donation by imitating
their partner’s past move (their behavior is close to the
mirror rule). They are thus at risk of responding strongly to
either a temporary misinterpretation of their own—the
blurred mind, or a temporary mistake of their partner’s—
the trembling hand. In contrast, with low responsiveness,
players adjust gradually their donation, and converge
slowly toward partner’s donation. Therein, they respond to
consistent trends in partner’s behaviors, smoothing down
temporary noise. Therefore, just like they cause a
Pavlovian strategy to be favored in the discrete IPD
(Nowak and Sigmund, 1993), communication errors tend
to cause natural selection to favor inertia (i.e., low partner-
responsiveness gÞ in the CIPD. An information-oriented
interpretation of this result is as follows. Information on
self is generally more reliable than information on partner
because it avoids environmental noise. But knowing oneself
per se is not useful in social interactions. Self-knowledge is
relevant because it constitutes an indirect, and yet
trustworthy, indication of what has likely been happening
earlier in the interaction. In other words it allows
integrating past information about partner without paying
the cost of large memory. Resetting one’s choice in each
round (i.e., employing a response rule with g ¼ 1Þ is unwise
because it entails the discarding of this information.

4. Discussion

In a simple model of social interaction, the continuous
prisoner’s dilemma, when the phenotypic correlation
between social partners is due to information exchange
and behavioral flexibility, any cooperation level can be
evolutionarily stable as long as a corresponding type of
phenotypic plasticity is expressed as well (Eq. (2)). Partners
can ignore each other and fail to cooperate, partially
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respond to each other and partially cooperate, or they can
perfectly mimic each other and fully cooperate. This can be
interpreted in the framework of kin selection theory. The
amount of phenotypic correlation between social partners
determines the evolutionarily stable level of cooperation
(Hamilton, 1964; Taylor and Frank, 1996). When both the
level of cooperation and the amount of phenotypic
correlation between partners can evolve, there are then
an infinite number of evolutionarily stable strategies, each
characterized by a given phenotypic correlation and the
corresponding level of cooperation (see also Taylor and
Day, 2004). However, a careful analysis reveals that
behavioral strategies that cause individuals to perfectly
match their opponents (i.e., that generate a perfect pheno-
typic correlation) are, in fact, the only strategies able to resist
any mutant invasion. Any other strategy is inevitably at risk
of invasion by leaving open the possibility for some mutants
to obtain a particularly large payoff against each other. In
brief, we have shown that a continuous equivalent of the tit-
for-tat is likely to evolve in the CIPD.

The mechanism explaining this result has a parallel in the
discrete IPD. Although unconditional defection is an ESS
in the discrete IPD, tit-for-tat is nevertheless able to invade
if it is present at high enough frequency because tit-for-tat
individuals obtain a very large payoff against each other
(Axelrod, 1984; Nowak and Sigmund, 1992; Nowak et al.,
2004). However, in the continuous version of the game, the
potential appearance of small effect mutants makes this
mechanism even stronger. By definition, at any ESS, the
disadvantage of mutants when playing against residents is
a second-order term of mutant deviation. Therefore, for
weak-effect mutants, the difference of payoffs in the rare
encounters against mutants becomes the leading term
determining the fate of mutants (see Eq. (1)). As a result,
most evolutionarily stable strategies are, in fact, susceptible
to mutant invasion, even in infinite populations, as long as
mutant frequency is not strictly equal to zero.

In the discrete IPD a further analysis has shown that a
strategy whereby individuals respond both to their own
and their partner’s past donation could also be an outcome
of evolution (Nowak and Sigmund, 1993). We considered
this more general case in the CIPD as well (see also
Killingback and Doebeli, 2002). We showed that evolution
should yield the fixation of any strategy whereby players
adjust their behavior, from one round to the next, by
incrementing donation as a function of the current
divergence with partner (Eq. (3)). Furthermore, among
these strategies, communication errors tend to favor those
that consist in adjusting donation with inertia, because
inertia allows responding only to consistent trends in
partner’s behaviors, and not to temporary noise.

Killingback and Doebeli (2002) suggest that selection
could favor strategies whereby players respond to their past
payoff, but our analysis suggests that such strategies
cannot, in fact, be evolutionarily stable. Payoff-responding
strategies are always susceptible to invasion by at least
some weak effect mutants (see Appendix A3).

In relation with this negative result about the evolutionary
importance of payoff-responding strategies, we want to stress
the fact that these strategies should not be considered as
continuous equivalent of Pavlovian strategies (Nowak and
Sigmund, 1993). The fact that Pavlovian strategies respond to
payoff rather than to partner’s last move is not the key part of
their definition. In fact, a closer examination of the win–stay/
lose–shift strategy, which was particularly successful in Nowak
and Sigmund (1993), shows that it does in fact respond only to
partner’s last move (Stay when partner cooperates, Shift when
partner defects; see Nowak and Sigmund, 1993).The origin-
ality of Pavlovian strategies rather lies in their ability to
respond by a change (or not) compared to last move, instead
of settling on a new behavior de novo in each round. Payoff-
responding strategies respond to payoff, but they do not
achieve the essential aspect of Pavlovian strategies: they decide
on their investment de novo in each round.
Our model makes two important assumptions that require

discussion. First, it considers only situations where both
players actually reach a stable agreement (whether this
agreement lies at the boundary of the space of possible
agreements or not). This first assumption is in fact double. It
implies (i) that partners interact for long enough to reach an
agreement and (ii) that there actually is such a stable
agreement. We believe the second aspect of the assumption
to be relatively mild. In most social/biological exchanges,
partners eventually reach a stable type of relationship after
some bouts of interaction, provided that duration is sufficient.
However, one must keep in mind that our model does not
offer any prediction in the relatively rare cases of highly
versatile interactions. We believe the first bit of the assumption
to be more serious. Indeed, our model does not embrace the
numerous cases of relatively brief interactions, where partners
do not have enough time to reach a stable agreement.
Second, our model assumes that players only make use

of the previous round as a source of information to decide
on their next donation. As a result, an individual’s response
to a given move is the same whenever this move takes
place. Another way to put it is to remark that the model
assumes a perfect auto-correlation between the way an
individual responds at one point of the interaction, and the
way he responds at any other point. Relaxing this
hypothesis would certainly make cooperation less feasible,
if not unachievable. Boyd and Lorberbaum (1987) actually
showed that the absence of correlation between individuals’
strategy at one round and strategy at other rounds renders
TFT unstable in the discrete prisoner’s dilemma, and we
believe that the same holds in the continuous prisoner’s
dilemma. However, reciprocity has a meaning provided
that the way an individual responds to his partner at one
point contains some information about the way he will
respond in the future, and therefore the existence of a
temporal auto-correlation of individuals’ response is a
biological prerequisite for reciprocity.
In conclusion, the present paper shows that, in the

continuous iterated prisoner’s dilemma where partners
respond to last move and ultimately reach a stable agreement,
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natural selection causes individuals to end up mirroring their
opponents. However, the proximate behavioral rule em-
ployed by individuals does not necessarily consist in
mirroring each and every one of their partner’s moves.
Individuals may instead adjust gradually their behavior, and
eventually converge, at stable agreement only, toward the
same donation as partner. In all cases, however, because
individuals end up matching their opponents, couples of
interacting partners effectively become the units of selection,
and cooperation is thus maximized by natural selection.
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Appendix A

A.1. Evolutionarily stable strategy in finite populations

Consider the Moran model for evolution in a population
of size N. Suppose the population is fixed for the resident
strategy, and introduce a single individual mutant. The
probability that the mutant ultimately replaces the resident
is

r ¼
1

1þ
PN�1

k¼1

Qk
i¼1gi=f i

, (A.1)

where gi and f i are, respectively, the resident’s and
mutant’s fitness when the population contains i mutants
(and N � i residents) (Nowak et al., 2004). These are equal
to:

gi ¼ 1� wþ w
Prmi þ PrrðN � i � 1Þ

N � 1
,

f i ¼ 1� wþ w
Pmmði � 1Þ þ PmrðN � iÞ

N � 1
, (A.2)

where w 2 ½0; 1� specifies the contribution of the game to
fitness, and the payoffs Prr, Prm, Pmr and Pmm are given in
the methods of the paper. Assuming that the deviation, d, is
small, the probability of fixation of the mutant is

r ¼
1

N
�

dB

6N
SN ðu; l; l̂Þ þOðd2Þ, (A.3)

where B ¼ w=½1� wð1� PrrÞ� depends on the basic payoff
Prr obtained by residents against each other, and the
function SN ðu; l; l̂Þ is given by

SNðu; l; l̂Þ ¼ ðb� cÞ �
l� l̂

1� l̂
� ðN þ 1Þ þ 3b

1� ll̂

1� l̂
� lN

 !

� 3c
1� ll̂

1� l̂
�N

 !
, ðA:4Þ

where b and c are defined as in the main text. This result
does not require that the contribution of the game to
fitness, w, be small.
In a finite population of size N, the resident is a local

ESS iff the fixation probability of any weak-effect mutant
(Eq. (A3)) is strictly lower than the fixation probability of a
neutral allele (Rousset and Billiard, 2000; Proulx and Day,
2001; Rousset, 2003; Nowak et al., 2004; Wild and Taylor,
2004). The quantity B is non-zero, and therefore if ro1=N

is to hold for all mutant deviations, we require that
SN ðu; l; l̂Þ ¼ 0; 8l̂. This requires that b ¼ c and that l ¼ 1
around the stable agreement.
Note that, as with the deterministic model, evolutiona-

rily stable strategies are ‘‘neutral ESSs’’ in the sense that
any alternative strategy yielding the same stable agreement
is neutral in a population fixed for the ESS (r ¼ 1=NÞ.

A.2. Simulation methods

In simulations, we considered partner-responsive linear
response rules, defined by a slope l and an intercept r.
Both the slope and intercept range from �2 to 2. Possible
donations made by individuals are restricted to a given
range between 0 and 2. Stable agreements can be of
different types in this case (Fig. A1).
When the product of the slopes of each partner’s

response rule is between �1 and 1 then the stable
agreement is found as the actual intersection of the two
rules (Fig. A1a).
When the product of the two slopes is larger than 1, the

intersection of the two rules is an unstable agreement.
The stable agreement of the interaction is then reached
at the boundary of the space of possible agreements
(Fig. A1b). In this case, there are two possible agreements
and the simulation method allows each one of them to be
reached with a probability proportional to its basin of
attraction (as if the first move was a random variable
uniformly distributed between 0 and 2).
When the product of the two slopes is lower than �1, the

interaction has no stable agreement at all (Fig. A1c). This
case cannot be considered in our model. When two
individuals are in this situation, we assume that they
cannot interact socially and thus obtain a nil payoff.
Mutations can be of two types, each occurring with given

probabilities. (1) Small effect on r or l: intercept or slope
of mutant follows a uniform distribution around the
intercept or slope of the wild-type. (2) Random mutant
independent of ancestor: mutant’s intercept and slope are
chosen randomly on a uniform distribution in the full
range of possibilities.
When two individuals interact, their payoff is calculated

as the payoff obtained at stable agreement. The benefit and
cost functions are BðuÞ ¼ 2u and CðuÞ ¼ u2, respectively.
The stable agreement of a given interaction is either that
given by the intersection of their two response rules, or else
it lies on the border of the square of possible donations.
We performed two types of stochastic simulations.
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(1) Instantaneous replacement: This simulation method is
adapted from Wahl and Nowak (1999a). Polymorphism is
neglected, and any mutant that arises either instanta-
neously replaces the resident or else is eliminated. In each
turn, a mutant is introduced (according to the mutation
procedure above) and competed against the resident. Three
criteria are employed to determine whether the mutant
replaces the resident or is eliminated: (i) If Pmr4Prr and
Pmm4Prm, then the mutant replaces the resident. (ii) If
Pmr4Prr and PmmoPrm, then the mutant replaces the
resident with probability p ¼ ðPmr � PrrÞ=ðPrm þ Pmr�

Pmm � PrrÞ. (iii) If PmroPrr and Pmm4Prm, then the
number of mutants is drawn from a Poisson distribution
of mean 1 (in practice the situation where 0 mutants are
present is not considered) and their frequency computed by
dividing by a parameter representing population size. If the
average payoff of mutants at this frequency is larger than
that of residents, then the mutant replaces the resident.
This last criterion is the only one that differs from Wahl
and Nowak (1999a)’s method.

(2) Individual-based simulations: Here, polymorphism is
allowed. The population has a constant size N, and
generations are non-overlapping. Each individual under-
goes mutation followed by reproduction. The fecundity of
each individual is equal to a basic fecundity, added to the
payoff obtained by the individual when interacting with
another random individual drawn from the population.
The next generation is then formed by random sampling of
N adults from an effectively infinite pool of propagules.

A.3. Bivariate response rules

Here, we consider the case where players choose their
next donation as a function of both their partner’s and
their own past donation. The general form of such response
rules is u0s ¼ f ðus; upÞ, where us and up are the donations
made by a focal individual and her partner. Consider a
resident strategy and a rare mutant employing, respec-
tively, the response rules f and f̂ . Suppose that, when two
residents encounter, they end up reaching a stable

agreement where both play u. Further, suppose that the
mutant response rule yields a stable agreement donation of
uþ d when interacting with a resident individual, where the
mutant deviation, d, is small. In this case, at final
agreement, the resident individual will make a donation
uþ Ld, where L denotes the overall resident responsive-
ness (which is yet to be determined). With these specifica-
tions, Eq. (1) of main text again holds at the ESS, i.e.,

ð1� qÞðLb� cÞ þ qðL̂b� cÞ
1� L

1� L̂

� �
dþOðd2Þo0. (A.5)

We must now calculate the resident responsiveness, L.
When a resident interacts with a mutant, the stable

agreement values must satisfy uþ Ld ¼ f ðuþ d; uþ LdÞ.
Expanding this in a Taylor series for small d gives

uþ Ld ¼ f ðu; uÞ þ gdþ bLd, (A.6)

where b ¼ qf =qus is the resident’s responsiveness to self,
and g ¼ qf =qup is its responsiveness to partner. Using the
fact that f ðu; uÞ ¼ u, Eq. (A6) can be solved to give the
overall responsiveness, L ¼ g=ð1� bÞ.
With these specifications, analyses analogous to those of

the main text show that the prevailing response rules satisfy
the following conditions:

g
1� b

¼ 1,

b� c ¼ 0, (A.7)

which are analogous to the conditions obtained in the simple
case of univariate response rules (l ¼ 1 and b� c ¼ 0, see
main text). In the bivariate case as well, prevailing response
rules end up mirroring their opponent (g=ð1� bÞ ¼ 1Þ, and
maximizing the mutual payoff of encounters.
The simplest rule satisfying conditions (A7) is linear, and

we refer to it as a generalized reciprocator. From the first
condition in Eq. (A7) we have g ¼ 1� b. Further, the
intercept must be zero for any stable agreement to be
reached, and therefore the rule is defined as:

u0s ¼ us þ gðup � usÞ, (A.8)

ARTICLE IN PRESS

Fig. A1. Examples of encounters between two linear response rules. (a) The product of the two slopes is between �1 and 1. The stable agreement (black

dot) is the actual intersection between the response rules. (b) The product of the two slopes is larger than 1. The intersection is an unstable agreement

(empty dot); the stable agreements are at the border of the space of possible investments (black dots). (c) The product of the two slopes is lower than �1.

There are no stable agreements in this case, and investment cycles indefinitely.
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where the partner-responsiveness g can take any strictly
positive value between zero and one. Thanks to the fact
that generalized reciprocators rely on the divergence with
partner in order to adjust their own donation, they are
guaranteed to play ultimately like any alternative strategy
they encounter. As a result, generalized reciprocators not
only resist invasion by weak-effect mutants, but resist
invasion by any mutant. Furthermore, in a population
fixed for any other strategy, generalized reciprocators rise
until fixation when starting in any frequency.

A.3.1. Payoff-responding rules

The above framework can also be used to analyze the
case of payoff-responding rules (Killingback and Doebeli,
2002). These are special cases of the general bivariate
response rule u0s ¼ f ðus; upÞ where f ðus; upÞ � gðBðupÞ �

CðusÞÞ for some function gðIÞ (and corresponding mutant
function ĝðIÞ), i.e., individuals respond exclusively to their
past payoff.

In this case, the above total responsiveness, L is
restricted to a form where b ¼ �dg=dIdC=du, and
g ¼ dg=dIdB=du. As a result, conditions (A7) require that

dg

dI
� ðb� cÞ ¼ 1,

b� c ¼ 0. (A.9)

These two conditions cannot hold simultaneously.
Consequently, any response rule that responds solely to
the payoff in the previous round will always be susceptible
to invasion by some weak-effect mutants.

A.4. Previous studies of the iterated prisoner’s dilemma

A.4.1. Analogies with the discrete prisoner’s dilemma

In the main text, we show that most evolutionarily stable
strategies can be invaded by mutants that reach a large
payoff against each other. This mechanism has an
equivalent in the simpler case of the discrete iterated
prisoner’s dilemma (IPD). Unconditional defection is an
ESS in the discrete IPD as no other strategy is able to do
better than defectors in a population of defectors.
However, a strategy called tit-for-tat whereby individuals
start by cooperating and then express, in each round, the
action expressed by their partner in the previous round, is
nevertheless able to invade when it is initially present at
high enough frequency, because tit-for-tat individuals
reach a very large payoff when playing against each other
(Axelrod, 1984; Nowak and Sigmund, 1992; Nowak et al.,
2004).

A.4.2. Simulation results in the continuous prisoner’s

dilemma

In a previous work (Wahl and Nowak, 1999a,b),
stochastic simulations did not seem to yield the general
emergence and fixation of perfect reciprocity, although
cooperative strategies with responsiveness close to one had

a remarkable importance (see Fig. 7 of Wahl and Nowak,
1999a). This appears to contradict our analytical results.
Although direct comparison of published simulation
results with our analysis is difficult, we believe that the
resolution stems from subtle aspects of how simulations of
continuous IPD are necessarily conducted. In short, we
suggest that perfect reciprocity will ultimately prevail in
stochastic simulations once it appears (as our analytical
results predict and our simulations show; Fig. 2 of main
text), but that its appearance is extremely unlikely in many
simulation techniques. In the following we describe the
general difficulty of observing the evolution of global
reciprocity in simulations, and explain why previous works
did not observe it.
In the continuous IPD, because there is a continuum of

possible strategies, simulations must typically employ
mutation to allow for the potential introduction of all of
these. The mutation scheme employed in simulations can
have significant effects on the outcome of simulations for
the following reasons: (i) selection in favor of global
reciprocity is weak because it involves rare mutant–mutant
interactions. Furthermore, directional selection towards
larger l is typically very weak. From a detailed analysis of
the invasion conditions (Eq. (1) of main text), one can
show that the mutants that are the most likely to invade are
those with l close to 1 (and with the appropriate intercept),
but other mutants with lower l can nevertheless always
invade as well. Therefore, whenever the resident’s l is not
strictly equal to one, evolution can occur in both
directions, making the outcome highly dependent on the
mutation scheme used in the simulations. This can cause
the population to evolve somewhat erratically, with little
directional tendency. (ii) Related to point (i), if mutation is
completely random within strategy space, then the like-
lihood of global reciprocity appearing is virtually zero.
Thus, even though perfect reciprocity would spread to
fixation once it appears, this rarely happens and thus the
population evolves somewhat erratically. (iii) Related to
point (ii), in simulations, the response rules used are always
linear. Therefore, when the slope of a response rule is close
to l ¼ 1, the stable agreement reached by individuals
playing this rule is extremely sensitive to the intercept of
that rule. As a result, virtually none of the mutants that
appear with l close to one will be advantageous.
Given these explanations, the simulation method em-

ployed in previous studies (Wahl and Nowak, 1999a,b)
could not lead to the definitive fixation of global reciprocity
but only to a slight tendency towards large values of l. Our
simulations are different on two respects. First, the
criterion that we use for mutant invasion is more restricted
and generates more stability. Second, and most impor-
tantly, global reciprocity ultimately prevails in our simula-
tions because it is introduced ‘by hand’ with a given
probability in each turn (see Appendix A.2, and Fig. 2).
Given the above considerations, it might be argued that,

although perfect reciprocity is the only response rule that
can resist invasion by any mutant, this finding is largely
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theoretical and of little relevance to real populations.
Instead, real population might be expected to evolve in
ways more akin to previous simulations (Wahl and Nowak,
1999a,b) than to the analytical results presented here. On
the contrary, however, we suggest that the assumptions
needed to perform simulations constrain these results in
unintended ways. Mainly, simulations assume that re-
sponse rules are linear and that their properties evolve on a
continuous multi-dimensional space. In consequence,
global reciprocity is very unlikely to appear. In contrast,
we suggest that global reciprocity is likely to arise by
mutation far more often than most other strategies because
it is very simple on biological terms. And once it does, our
results clearly reveal that it will spread to fixation. Even in
the discrete IPD where the ‘probability of appearance’
problem is less of an issue because the strategy space is
much smaller, when one considers a large range of possible
strategies, tit-for-tat must also be introduced ‘by-hand’ in
order to evolve (Nowak and Sigmund, 1992). Therefore,
although clearly neither simulations nor the present
analytical results are complete descriptions of the evolu-
tion of any natural biological population, there are
good reasons to believe that the insights provided by
the analytical results might more closely match such
populations.

A.4.3. Payoff-responding strategies in the continuous

prisoner’s dilemma

Previous results have also revealed that payoff-respond-
ing rules can result in the evolution of cooperative behavior
(Killingback and Doebeli, 2002), despite the fact that our
analysis suggests that there are no strategies in such games
that are resistant to invasion by all mutants. This contra-
diction is only apparent, however, since our results for
payoff-responding strategies reveal that there is no single
strategy that is able to resist invasion by all weak-effect
mutants. This does not imply, however, that some sort of
complex polymorphism cannot stabilize as a result of the
combined forces of mutation and selection. Indeed, our
analysis agrees exactly with the treatment of Killingback
and Doebeli (2002) for payoff-responding strategies.

These authors considered the sub-case, analogous to our
treatment of payoff-responding strategies, in which the
function g is linear: gðIÞ ¼ aþ bI in their notation (Kill-
ingback and Doebeli, 2002). In this case, inequality (A5)
can be reversed to determine when any non-zero level of
donation is expected to evolve. For rare mutants, letting q

go to zero, we require Lb� c40. Evaluating this condition
at u ¼0, using the definition L ¼ bB0ðuÞ=ð1þ bC0ðuÞÞ (see
Appendix A.3), gives the condition:

b4
C0ð0Þ

B0ð0Þ2 � C0ð0Þ2
.

This special case is exactly the threshold theorem of
Killingback and Doebeli (2002). When it is satisfied, some
level of cooperative behavior is expected to evolve. In such
cases, however, unlike response rules that are functions

only of one’s partner’s previous action, there is no single
strategy that can resist any mutant invasion. Rather, the
expected outcome of evolution cannot be predicted
analytically. Either non-equilibrium behavior results, or
an equilibrium involving a polymorphism occurs. Simula-
tion results from Killingback and Doebeli (2002) suggest
the latter, but it is not possible to unambiguously
distinguish this possibility from very slowly changing
non-equilibrium dynamics using their results.

A.5. The consequences of errors

Our results on the necessary properties of prevailing
response rules are valid for linear as well as non-linear
response rules. Whether they are linear or not, the only
response rules that can resist invasion by any mutant have
the same outcome in terms of (i) cooperation level and (ii)
local responsiveness to self and partner. These conditions
concerning local properties of response rules around
agreement are necessary for resistance to weak-effect
mutants (i.e., mutants leading to a stable agreement close
to resident’s, see Fig. 1c of main text). However, in order
for response rules to resist invasion by any mutant, these
conditions must be satisfied globally as well, i.e., response
rules must be linear. For instance, in the case of partner-
response only, local stability stipulates that response rules
must cross the diagonal with a slope equal to one (i.e., they
must be tangent to the diagonal), whereas global stability
stipulates that the response rule must be linear with a
slope equal to one (i.e., the rule must be the diagonal itself,
Fig. A2a). Both perfect reciprocation and general recipro-
cation are globally stable response rules, and they are
linear.
However, these linear rules raise another problem.

Neither perfect reciprocation nor general reciprocation
encompasses any force bringing back donation to the
optimal level u� would it diverge from this level by mistake.
If noise is an important issue, and if interactions really last
an infinite amount of time, then donation will certainly
drift far away from the optimum. The only way for
response rules to maintain their donation forever close to
the optimum is to be somehow non-linear. For instance, in
the case of partner-response only (but the same reasoning
can be employed for bivariate response rules), response
rules must over-respond to partner when donation is too
low in order to move donation up, and vice versa when
donation is too high (Fig. A2b–d). Therefore, as a flip side,
these response rules can be exploited by strong effect
defectors, benefiting from their over-response at low
partner donation. Unfortunately, our model does not
allow predicting in a quantitative way the evolution of
response rules in this case.

A.5.1. Slowing down the drift with inertia

The drift of donation due to the accumulation of errors
can be significantly slowed down in the linear case (but not
prevented). This occurs with generalized reciprocation and
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low partner responsiveness (see Eq. (A8)), as we shall
explain in the following. When two identical generalized
reciprocators interact, starting, respectively, with dona-
tions u1 and u2, then the average donation in any round m

is constant and given by

ūðmÞ ¼
u1 þ u2

2
.

As any linear rule, generalized reciprocation does not
contain any directional force affecting average donation.

Let us now consider the following scenario. Two players
with the same generalized reciprocating response rule
interact. In each round, they both aim at donating u�,
and they do so until an error occurs. In a round, arbitrarily
called 0, player 2 is willing to donate u� but donates, or
seems to donate, u� þ � instead. In fact, what player 2 really
donates does not matter. What matters is the subjective
measure of her donation by her partner, as well as by
herself. In order to integrate various possibilities in a
general framework, let us consider that player 1 measures
player 2’s donation as u� þ �, while player 2 thinks that she
has donated u� þ s � �, where s 2 ½0; 1�. A low s means that
player 2 is better than player 1 at measuring accurately her
own donation or at knowing her own intention. In most
cases, s should be 0 because player 2 firmly knows that she
donated or was willing to donate u�.

In the next round, player 1 responds to what she
observes by playing u1 ¼ u� þ g � �, whereas player 2
responds by playing u2 ¼ u� þ s � �ð1� gÞ. Therefore, in
the following of their interaction and in the absence of
ulterior errors, the average donation of both players in any
round will be

ū ¼ u� þ
�

2
½sþ ð1� sÞg�.

As long as individuals have a superior access to their
own behavior or intentions than other individuals (i.e.,
so1Þ, then the average cost of error in each round increases
with the level of responsiveness to partner (gÞ (see
discussion in main text).

This result can be readily extended to consider the case
where errors are being made in each round. Because
generalized reciprocation does not encompass any direc-

tional force, the average donation in each round is constant
except for errors. Therefore after n rounds with an error �i
made in each round, the average donation is

ūðnÞ ¼ u� þ
sþ ð1� sÞg

2

Xn

i¼1

�i.

Assuming that errors have standard deviation s and are
unbiased (i.e., the expectation of �i is zero) then the
standard deviation of average donation in round n is given
by

s̄ðnÞ ¼ s
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ð1� sÞg

2

r
.

The standard deviation of donation is linearly increasing
with the number of rounds because errors accumulate.
However, if so1, then the larger is inertia (low gÞ, the
slower errors accumulate.
In practice, in order to avoid the indefinite accumulation

of errors, strategies must necessarily encompass a certain
degree of non-linearity. However, it is not possible to
follow analytically the successive donations made by each
individual when rules are non-linear. Yet, locally around
stable agreement, non-linear rules behave like linear ones
(see Eq. (A7)). In other words, if non-linear rules are able
to bring back donation closer to u� when it diverges from
it, it is only because of their curvature. Therefore, even
though it cannot be demonstrated analytically, it seems
plausible that, even with non-linear rules, inertia should
slow down the accumulation of errors and thus allow
individuals to play generally closer to the optimum. Of
course, if social interactions do not really last indefinitely,
then such inertia comes at a cost, because it delays one’s
reaction to potential defectors. Therefore, quantitatively,
inertia should be at a balance between the cost of errors
and the potential cost of being cheated.
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