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Abstract
Background: Like other vertebrates, primates recognize their relatives, primarily to minimize
inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited
for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-
biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar
kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular
approach that combined analyses of biochemical and microsatellite markers in 17 female and 19
male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility
of olfactory-mediated kin recognition.

Results: Despite derivation from different genital glands, labial and scrotal secretions shared about
170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded
information about genetic relatedness within and between the sexes. Although the sexes showed
opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether
same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus,
a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information
would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist
year round could provide a mechanism to explain nepotism between unfamiliar kin.

Conclusion: We suggest that signal convergence between the sexes may reflect strong selective
pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-
product or function independently to prevent competition between unfamiliar relatives. The link
between an individual's genome and its olfactory signals could be mediated by biosynthetic
pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual
bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin
recognition that has specific relevance to understanding inbreeding avoidance and nepotistic
behavior observed in free-ranging primates, and broader relevance to understanding the
mechanisms of vertebrate olfactory communication.
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Background
Most vertebrates recognize their close relatives (kin recog-
nition), either to avoid mating with them or to identify
the most appropriate recipients of nepotistic behavior
(kin discrimination) [1-3]. Although the benefits of kin
recognition may be clear, the mechanisms by which it
operates are often less evident. In primates, for instance,
researchers typically credit associative, social learning in
the discrimination of familiar kin [2,4], but the discrimi-
nation of unfamiliar kin (e.g. [5,6]) defies explanation via
associative learning [7]. As sex-biased dispersal cannot
consistently prevent kin encounters, particularly in long-
lived species, inbreeding between unfamiliar kin remains
a real threat and carries potentially disastrous fitness con-
sequences [8-10]; consequently, mechanisms to avoid it
beg explanation. Indeed, a deeper understanding of com-
municatory signals demands integration of 'why' ques-
tions about ultimate function with 'how' questions about
proximate mechanisms [11]. As olfactory-mediated kin
discrimination is gaining appreciation in other taxonomic
groups [3,12,13], we propose that primates might also use
odor cues to assess kinship or genetic relatedness, particu-
larly to identify unfamiliar kin. As a first step to addressing
this question, we merge biochemical and genetic analyses
to test if olfactory signals offer a reliable means of kin rec-
ognition in a strepsirrhine primate, the ring-tailed lemur
(Lemur catta).

Research on kin discrimination is typically focused on
documenting its occurrence. For instance, under natural
conditions, researchers have coupled field observations
with genetic analyses to show non-random spatial associ-
ations or preferential treatment between unfamiliar kin
[7,14,15] and avoidance of unfamiliar relatives as mates
[16-19]. In the laboratory, researchers have relied on
behavioral bioassays or cross-fostering experiments to
assess an individual's ability to differentiate unfamiliar
kin from non-kin [3]. Here, we focus instead on decipher-
ing a putative olfactory mechanism of kin recognition by
showing odor-gene covariance, which occurs when the
similarity between the olfactory signals of two individuals
reflects their genetic similarity at specific or multiple loci
[20]. In inbred mouse lines, for example, at least two gene
families (e.g., the major histocompatibility complex or
MHC and mouse urinary proteins or MUPs) influence the
olfactory profiles of an individual's urine [21-23] and
underlie conspecific recognition [24]. Only a handful of
studies have begun to examine if similar results might
obtain in non-model vertebrates that have different sign-
aling systems or if additional genes may be involved in
creating individual odor profiles. Indeed, the interaural
secretions of bats relate to maternal lineages [25], the anal
secretions of beavers encode pedigree relationships [26],
and the scrotal secretions of male ring-tailed lemurs reflect
individual genetic diversity (i.e., neutral, whole-genome
heterozygosity) and genetic relatedness among males

[27]. The latter results have significant implications for
olfactory-guided female mate choice and male-male com-
petition, suggesting that odor-gene covariance in this spe-
cies merits further investigation. Here, we complement
our prior findings by examining if the olfactory cues com-
mon to female and male genital secretions relate to
genome-wide relatedness within and, more importantly,
between the sexes. If so, olfactory cues could provide a
reliable mechanism of kin recognition to guide nepotistic
behavior and inbreeding avoidance.

Ring-tailed lemurs live in multi-male multi-female
groups, characterized by a promiscuous breeding system,
as well as by female philopatry and male-biased dispersal
[28,29]. As a long-lived species that also experiences
female eviction [30] and repeated male migration [29],
they face the risk of consanguineous mating with unfamil-
iar kin. When it occurs, inbreeding may have dire conse-
quences, including depressed immune function and
reduced life expectancy [31]. Olfactory communication is
critical to lemur social interaction, as evidenced by their
unique set of specialized scent glands or glandular fields,
their elaborate scent-marking repertoire, and the intensity
of response these scent signals elicit from conspecifics
[28,32-34]. Here, we focus on the genital secretions
derived from the labial glandular fields and the scrotal
glands because, beyond encoding identity, these secre-
tions are the most comparable between the sexes [34,35].

We sampled 17 sexually mature females year round, dur-
ing the extended nonbreeding season and the relatively
limited breeding season, following published protocols
[35]. Our comparable male data (on n = 19 adults)
derived from a prior study [27]. We used a sequential
approach to determine if genital secretions encode infor-
mation about relatedness within and between the sexes.
For the first analysis involving all female-female (FF)
dyads, we related differences in the semiochemical secre-
tions between dyads of females to their pairwise genetic
distance. This analysis is particularly relevant to examin-
ing olfactory mechanisms guiding nepotistic or competi-
tive behavior between members of the same sex. For the
second analysis involving all mixed-sex (MF) dyads, we
related differences between the semiochemical secretions
and pairwise distances in MM, FF, and MF dyads using a
subset of semiochemicals shared by the sexes. For the last
analyses of odor-gene covariance, we focused exclusively
on MF dyads. These latter analyses are of primary rele-
vance to examining olfactory mechanisms of inbreeding
avoidance.

Results
Sex differences and similarities in signal composition
Females expressed a greater number of semiochemicals in
their genital secretions than did males (total compounds
overall: females = 338, males = 203; mean ± SD com-
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pounds in the breeding season: females = 217.8 ± 20.0,
males = 135.0 ± 13.5; t-test, t34 = 14.7, P < 0.001; mean ±
SD compounds in the nonbreeding season: females =
200.1 ± 19.3, males = 154.4 ± 10.5; t-test for unequal var-
iance, t24 = 8.7, P < 0.001). This sex difference was typi-
cally accounted for by the presence in females of
additional low-molecular weight compounds, such as
fatty acid alcohols. Despite this sex difference in overall
expression and despite their distinct anatomical deriva-
tion [34], labial and scrotal secretions shared a total of
170 compounds, defined as those compounds expressed
in at least one female and one male (representing 50.3%
and 83.7% of total female and male compounds, respec-
tively; Figure 1). These shared compounds included fatty
acid esters (49%), unknown hydrocarbons with identified
molecular mass (25%), fatty acids (10%), compounds
related to cholesterol (2%), long-chained alcohols (2%),
squalene (< 1%), farnesol (< 1%), and 1,6,10-dodeca-
triene,7,11-dimethyl-3-methylene (< 1%).

Seasonal sex differences in semiochemical diversity
The sexes also differed in their seasonal patterns of semi-
ochemical diversity, as reflected by three indices, includ-
ing Richness (which refers to the number of observed
semiochemicals) and the Simpson and Shannon indices
(which both correct for semiochemical abundance, see
Methods and [36]). In males, genital scent signals showed
a consistent decline in semiochemical diversity, across all
indices, from the nonbreeding to the breeding season
[27]. By contrast, the semiochemical diversity of female
scent secretions either increased during the breeding sea-
son (Richness index, paired t-test, t16 = 2.43, P = 0.03) or
remained stable across seasons (Shannon index: t16 =
1.25, P = 0.23; Simpson index: t16 = 0.27, P = 0.79), poten-
tially because those compounds gained during the breed-
ing season contributed only a small proportion (less than
0.5%) to the total chromatogram area. Thus, during the
breeding season, whereas signal complexity was compro-
mised in most males, females maintained or enhanced
their signal complexity.

Within-sex odor-gene covariance
We found that, complementing the pattern in males [27],
the olfactory cues present in female genital secretions
encoded information about female relatedness in a sea-
sonally dependent fashion. In particular, the chemical dis-
tance between members of FF dyads showed no
relationship to their genetic distance during the non-
breeding season (partial Mantel test, r = -0.07, P = 0.39;
Figure 2A and 2C), but correlated significantly with their
genetic distance during the breeding season (partial Man-
tel test, r = 0.22, P = 0.02; Figure 2B and 2D).

Between-sex odor-gene covariance
Representative chromatograms of related and unrelated
MF pairs during the breeding season illustrate the greater

semiochemical similarity between, for example, brother-
sister and mother-son pairs than between two unrelated
individuals born to different colonies (Figure 1). To statis-
tically examine the relationship between chemical and
genetic distances between mixed-sex pairs, we first ran a
partial Mantel test, as above, but for all possible dyads (n
= 630 MM + FF + MF dyads). Overall, chemical and
genetic distances did not correlate during the nonbreed-
ing season (partial Mantel test, r = 0. 01, P = 0.76), but did
correlate during the breeding season (partial Mantel test, r
= 0.13, P = 0.002), consistent with the patterns found
independently for same-sex analyses (males: [27];
females: Figure 2).

Next, we extracted from the 630 dyads those pairs involv-
ing males and females only (n = 323 MF dyads, Figure 3A
and 3B). As we could not use the Mantel test for the MF
dyads alone (because the corresponding MF matrix would
not have been square), we instead used a permutation test
to compare the empirical correlation coefficient (Spear-
man's r) against a distribution of correlation coefficients
generated by resampling events [37]. With this analysis,
we detected a significant pattern of odor gene-covariance
during both the nonbreeding (r = 0.12, P = 0.018) and the
breeding (r = 0.24, P = 0.001) seasons. According to these
tests, the odor-gene covariance appeared to be expressed
in mixed-sex pairs throughout the year, but was stronger
during the breeding season. For a more conservative anal-
ysis, we categorized the 323 MF dyads into five classes of
genetic distances (Figure 3C and 3D, as for FF dyads in Fig-
ure 2C and 2D and as for MM dyads in [27]), which we
compared using permutation tests based on class means
[38]. During the nonbreeding season, the mean semio-
chemical distance between members of MF dyads did not
vary across classes of genetic distance (all pairwise Ps >
0.05); olfactory cues in the nonbreeding season did not
reflect the genetic relationship between males and females
(Figure 3C). During the breeding season, however, the
mean semiochemical distances between members of MF
dyads were significantly differentiated across nearly all
classes (pairwise Ps < 0.001, except for class 0.3-0.4 vs.
class 0.4-0.5, P = 1.0), increasing systematically with
genetic distance (Figure 3D). According to this analysis,
and consistent with within-sex patterns (Figure 2, [27]),
the olfactory cues encoding relatedness between the sexes
were evident only during the breeding season.

Discussion
By integrating genetics and biochemistry, we provide the
first molecular evidence that the scent secretions
expressed by the genital glands of male and female lemurs
contain olfactory markers of genetic relatedness within
and, more importantly, between the sexes. To date, con-
vergence in olfactory profiles between relatives had been
reported only for same-sex dyads [26,27]. Moreover,
although semiochemicals common to both sexes have
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been identified in the secretions derived from the same
gland in other species [12,13], we report on signal conver-
gence in the secretions derived from comparable, but ana-
tomically distinct glands or glandular fields [34,39].
Lastly, although the sexes diverged seasonally with respect

to their signal complexity, mixed-sex (and same-sex) con-
vergence in the olfactory signals of related individuals
appeared most strongly (or only) during the breeding sea-
son, suggesting that genital secretions are 'mutual signals'
[40] that encode information primarily relevant to

Odor profiles of the genital secretions in mixed-sex pairs of related and unrelated lemursFigure 1
Odor profiles of the genital secretions in mixed-sex pairs of related and unrelated lemurs. Chromatograms of 
labial (first column) and scrotal secretions (second column) from three female-male pairs of lemurs during the breeding season. 
Top row: maternal half-siblings, representing a sister (A) and her brother (B). For this pair, DID = 0.28 and DC = 0.47. Middle 
row: mother (C) and son (D). For this pair, DID = 0.18 and DC = 0.54. Bottom row: unrelated female (E) and male (F) born in 
different colonies. For this pair, DID = 0.55 and DC = 1.16. The filled arrow points to the internal standard, hexachlorobenzene, 
added to the sample before the GCMS run and the open arrow points to the endogenously produced standard, squalene.
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inbreeding avoidance, with potentially secondary or inde-
pendent implications for facilitating nepotism year
round. The convergence of olfactory signals within and
between the sexes likely underlines strong selective pres-
sures on kin recognition.

Whereas for many females the benefit of inbreeding
avoidance may be clear (e.g. to avoid the high energy
investment of pregnancy and lactation if the offspring
produced would be of low quality), the benefit to males
may be less apparent, given their seemingly reduced
investment in reproduction. What then might be the
selection pressures operating on males to explain olfac-

tory convergence between the sexes? In some species, the
olfactory profiles of certain males converge on those of the
females to dupe conspecifics in sex communication [41-
43]. Such duplicity is unlikely, however, in members of
individualized societies. Moreover, it is not supported in
ring-tailed lemurs by olfactory evidence, given that sex
and individual identity are chemically encoded [35] and
detected [33,34] in scent cues throughout the year. An
alternate explanation may be found in a broader applica-
tion of sexual selection theory. Increasing evidence of
female-female competition and male mate choice sug-
gests that various species may not conform to a dichot-
omized pattern of 'expensive eggs' and 'cheap sperm' [44].

Odor-gene covariance in female-female dyadsFigure 2
Odor-gene covariance in female-female dyads. Relationships between genetic distances (DID) and chemical distances 
(relative Euclidean, from 338 compounds) in 136 female-female dyads during the nonbreeding (open circles, A and C) and 
breeding (filled circles, B and D) seasons. The partial Mantel tests were performed on the data illustrated in A and B. For ease 
of representation and continuity with [27], in C and D we also show these relationships using mean chemical distances per 
class of genetic distances.
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Indeed, in socially complex species characterized by slow
life histories, males may face significant reproductive costs
that increase the benefits derived from being choosy.
Thus, female and male lemurs may share similar selection
pressures to avoid inbreeding.

Odor-gene covariance also raises the possibility that odor
cues could serve to prevent outbreeding, again with simi-
lar benefits to both sexes. Outbreeding depression,
although less well documented than inbreeding depres-
sion, can also produce negative consequences on fitness
[45,46]. In only a few studies have researchers tested if

odorants offer reliable cues that could serve to identify an
optimally dissimilar mate and thereby help individuals
avoid the fitness consequences of either inbreeding or
outbreeding. In humans, individuals tend to pair with
mates that are not too dissimilar at functional loci [47],
but the sensory mechanism that may drive the avoidance
of dissimilar mates remains unclear. In more extreme
cases, odor-gene covariance could facilitate species or sub-
species recognition. In callitrichid primates, for instance,
the scent gland secretions from two subspecies (Saguinus
fuscollis fuscollis and S. f. illigeri) contained distinctive
chemical markers [48] and elicited discriminative

Odor-gene covariance in male-female dyadsFigure 3
Odor-gene covariance in male-female dyads. Relationships between genetic distances (DID) and chemical distances (rela-
tive Euclidean, from 170 compounds) in 323 male-female dyads during the nonbreeding (open circles, A and C) and breeding 
(filled circles, B and D) seasons. The permutation tests on resampling events were performed on the data illustrated in A and 
B. The permutation tests based on class means were performed on the data illustrated in C and D, which represent mean 
chemical distances per class of genetic distances, as defined in [27]. The maternal half-siblings (Figures 1 A-B) and the mother-
son (Figures 1 C-D) pairs belong to the first category of genetic distances (DID = 0.1 to 0.3), whereas the unrelated pair (Fig-
ures 1 E-F) belong to the fourth category of genetic distances (DID = 0.5 to 0.6).
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responses by members of either subspecies [48,49]. Thus,
it may be possible that odor-gene covariance mediates
outbreeding avoidance within and between species [20].
Given that Lemur catta's nearest sister taxon belongs to a
different genus (Hapalemur) [50], the threat of hybridiza-
tion would seem less likely than the threat of inbreeding.
Future studies could address the issue of outbreeding by
comparing the scent gland semiochemistry of individuals
derived from several populations or subspecies and meas-
uring the behavioral responses the various mixtures of
semiochemicals may elicit [20].

Although fascinating, it is unclear why the signal of
genetic relatedness appears to be largely seasonally
dependent. Consistent with the scent secretions of other
mammals [51,52], including other primates [48,53,54],
the labial and scrotal secretions of ring-tailed lemurs are
extremely complex [35] and encode multiple messages
[34]. Our permutation analyses suggest that the message
of genetic relatedness between males and females may
exist during the nonbreeding season also, but as a weaker
signal. Perhaps, during the extended nonbreeding season,
the message of genetic relatedness may become masked
by the expression of compounds encoding other mes-
sages. Nonetheless, it could facilitate nepotism year
round: Behavioral bioassays show that certain discrimina-
tory responses of lemurs to the scent of conspecifics are
limited to the breeding season and may be related to the
selection of an appropriate mate, whereas others occur
year round and may be related to nepotism (Charpentier
MJE, Crawford JC, Boulet M, Drea CM: Lemurs Detect the
Genetic Relatedness and Quality of Conspecifics via
Olfactory Cues, submitted). Although we have not yet
identified any specific semiochemicals responsible for
broadcasting genetic relatedness, we have identified sea-
sonal variation in semiochemical expression [27].

Also unclear is the manner by which olfactory signals
come to represent an individual's genome. One possible
mediating mechanism implicates genetic polymorphism
in the enzymes involved in the biosynthesis of semio-
chemicals. For instance, semiochemical diversity could
result from the action of desaturases [55,56] or elongases
[57] that modify hydrocarbon-based semiochemicals.
While deciphering the biosynthetic pathways of insect
pheromones [58], researchers have linked an individual's
olfactory profile to the activation of various enzymes
[56,58] and have shown that semiochemicals, such as
long-chained hydrocarbons, play a role in kin recognition
and inbreeding avoidance [57-60]. As most of the semio-
chemicals found in lemur genital secretions are not
present in their monkey chow (Sacha C, Dubay G, Boulet
M, and Drea CM; unpublished data), they appear to be
endogenously produced and may be derived from com-
mon biosynthetic pathways (e.g., squalene is a precursor

of cholesterol). Notably, the secretions of lemurs [35]
share the diverse hydrocarbon-based semiochemicals
found in other mammals [52]. Therefore, the enzymes
involved in the synthesis of polymorphic semiochemicals
could reflect genome-wide variation and be involved in
mammalian chemical communication of genetic related-
ness.

Alternatively, or in addition to biosynthetic pathways, an
individual's semiochemical profile could be linked to the
availability of polymorphic binding proteins that modify
the bouquet of semiochemicals emitted by scent glands
[61]. Lipocalins represent a large class of extracellular pro-
teins that have the property of binding diverse hydropho-
bic molecules, such as fatty acids and fatty alcohols [62].
The lipocalin family includes MUPs, a group of binding
proteins functioning as semiochemical transporters [63]
and notably linked to inbreeding avoidance in mice [23].
These binding properties render lipocalins suitable candi-
date molecules for kin recognition. Interestingly, two
MUP-related genes have been recently detected in the
genome of the grey mouse lemur, Microcebus murinus [64].

Other candidates include the highly polymorphic MHC
genes that are known to affect vertebrate mate choice and
kin recognition through their influence on individual
odor [21,22,65-68], although the pathway from MHC
genes to individual odor profiles may not be completely
resolved. In ring-tailed lemurs, specific MHC alleles may
correlate with the abundance of some fatty acids present
in scent secretions [69]. Data of this sort raise the possibil-
ity of an association between MHC genes and the path-
ways producing semiochemicals [67,70]. The relevant
signal of genetic constitution could derive from the semi-
ochemical profile alone or in conjunction with these var-
ious binding proteins, and could function in primates and
other vertebrates to reveal genetic relatedness. The present
findings have clear relevance to strepsirrhine primates and
other mammals with functional vomeronasal organs
(VNO), including platyrrhines (i.e., New World monkeys
[71]). Given the functional overlap between the VNO and
main olfactory epithelium [63,72], however, these find-
ings are also likely to extend to catarrhines (i.e., Old
World monkeys and apes, including humans) that argua-
bly lack a functional VNO [73,74]. Anthropoid primates
produce a diversity of odorous substances (including
scent-gland secretions, urine, and axillary sweat)
[12,52,54], the functional significance of which remains
obscure and underappreciated. Nonetheless, human sem-
iochemicals have been implicated in mother-infant recog-
nition [75], recognition of familiar kin or non-kin [76],
and possibly quality/compatibility-based mate choice
[68,77,78]. We suggest that an olfactory mechanism could
also function in various species to explain the scarcity of
mating between unfamiliar kin (e.g. [18]), as well as
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paternal recognition and protection of offspring (e.g. [79-
82]).

Conclusion
We characterized the secretions expressed by the genital
glands of male and female ring-tailed lemurs and showed
that these chemical compounds encode genetic related-
ness not only within the sexes, but even more strongly so
between the sexes. We suspect the link between an indi-
vidual's genome and its olfactory signals could be medi-
ated in two ways: by biosynthetic pathways producing
polymorphic molecules and/or by binding proteins mod-
ifying the bouquet of semiochemicals emitted by scent
glands. We also found that the relationship between odor
profiles and genetic relatedness emerges most strongly
during the competitive breeding season, when such infor-
mation would be crucial for preventing inbreeding and/or
directing nepotistic or competitive behavior to appropri-
ate recipients. Although behavioral studies will be neces-
sary to verify the animals' sensitivity to chemically
encoded information, we suggest that the seasonal con-
vergence of a mutual olfactory signal between two sex-spe-
cific scent glands is likely to reflect strong selective
pressure on mate choice. Signal convergence within the
sexes may arise as a by-product of between-sex conver-
gence, but could function independently to prevent com-
petition or facilitate altruism between unfamiliar
relatives. Our novel analytical approach for identifying
odor-gene covariance holds significant promise for deci-
phering mechanisms of semiochemical signaling in verte-
brates and calls specific attention to the important,
though often neglected, role of olfactory communication
in primates.

Methods
Subjects and Housing
Our female subjects were 17 reproductively intact adults
(2-23 years old). Females and males were housed at the
Duke Lemur Center (DLC) in Durham, North Carolina.
Housing conditions have been described elsewhere
[27,35] and were in accordance with regulations of the
United States Department of Agriculture and with the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals. All research protocols were
approved by the Institutional Animal Care and Use Com-
mittee of Duke University (protocol #A245-03-07).

Collection of odorants and chemical analyses
Information about our collection procedure, odorant
extraction, and gas-chromatography mass-spectrometry
(GCMS) protocols has been provided elsewhere [27,35].
We collected scent samples over a period of years, span-
ning November 2003 to November 2007. This sampling
period allowed us to maximize our subject pool, which
otherwise would have been limited by pregnancy, contra-

ception, immaturity, or death. The maximum time
between collection and analysis was three years. We have
previously verified sample preservation over freezer stor-
age time [35], as have other researchers [83].

We analyzed chromatograms using the software Solution
Workstation (Shimatzu Scientific Instruments). We
retained semiochemicals that had consistent retention
times and accounted for ≥ 0.05% of the area of the total
chromatogram. To align the peaks between chromato-
grams, we standardized semiochemical retention times
(rt) against the retention times of two standards: hex-
achlorobenzene (rt = 12.6 min) and squalene (rt = 28.5
min), a natural constituent of lemur genital secretions
[35]. Semiochemicals were identified by comparing mass
spectra against the NIST library, retention time of known
compounds, and prior tentative identifications [35].

We compared the semiochemical diversity of secretions
between seasons by generating the following indices: rich-
ness, Shannon, and Simpson [27]. These indices capture
different aspects of the diversity present in semiochemical
profiles: Whereas the richness index refers to the total
number of semiochemicals per chromatogram, the Shan-
non and Simpson indices weight semiochemicals accord-
ing to their abundance [36]. As the mathematical
equations of the Shannon and Simpson indices are differ-
ent, they generate distinct biases: the Shannon index is
most strongly influenced by the compounds that are of
intermediate abundance, whereas the Simpson index is
most sensitive to the compounds that show the greatest
abundance. All indices were computed in the software PC-
ORD 5.20 [36].

For the analyses of odor-gene covariance in FF dyads, we
retained 338 semiochemicals (retention time between
8.02 to 42.56 min), which we expressed as peak area rela-
tive to the total area of the chromatogram. For similar
analyses in mixed-sex dyads (MF), we first compared the
338 semiochemicals detected in labial samples to the 203
semiochemicals previously detected in scrotal secretions
[27] to identify those semiochemicals shared by both
sexes (i.e., those present in at least one male and one
female). We then used only those 170 shared compounds
in our mixed-sex analyses. As a proxy for chemical dis-
tance (DC), per season, we estimated the relative Eucli-
dean distances between the semiochemical profiles of all
possible dyads (n = 171 MM dyads; n = 136 FF dyads; n =
323 MF dyads) using the software PC-ORD 5.20 [36] and
following previously published protocols.

Genetic analyses
We genotyped 81 DLC colony members at 11-14 micros-
atellite loci. These numbers differ slightly from those (i.e.,
n = 73 individuals at 9-14 loci) previously reported [27],
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reflecting the additional genotyping of some individuals
at certain loci. We used the Identity index, RID, as an esti-
mate of genetic relatedness [84] and transformed this
index to obtain genetic distances, DID, using the following
equation: DID = 1- RID. We obtained similar results using
the Queller and Goodnight index [85]. From all possible
pairwise combinations, we retrieved those pairs involving
subjects for which we had semiochemical data (partial
Mantel test with 17 females: n = 136 FF dyads; partial
Mantel test with 17 females and 19 males: n = 630 MM +
FF + MF dyads; permutation tests, n = 323 MF dyads).

Statistical analyses
We compared chemical diversity between male and
female secretions by computing t-tests or t-tests for une-
qual variances (which adjusts the degrees of freedom). To
test for seasonal differences in chemical diversity in
female secretions, we used a paired t-test (SPSS 15.0 for
Windows, SPSS Inc.). We tested for linear relationships
between DC and DID by computing partial Mantel tests
(Fstat version 2.9.3.2; with 2000 randomizations and
backward selection of variables, [86]). As in our previous
study [27], we controlled for various potentially con-
founding factors, including the subject's age, their hous-
ing conditions, and the month of sample collection (see
Additional file 1). For the partial Mantel test on MM + FF
+ MF dyads, we included sex as a supplementary co-varia-
ble (see Additional file 2). The matrices included 171 MM,
136 FF dyads, and 323 MF dyads.

As we were particularly interested in testing if genital scent
secretions may encode information that could be used in
the context of inbreeding avoidance, we again correlated
chemical distances with genetic distances, focusing specif-
ically on MF dyads. We used two types of permutation
tests to address this question. For the first type of permu-
tation test [37], we calculated the empirical correlation
coefficients (see Additional file 3) between chemical and
genetic distances of MF dyads and compared them against
a distribution of correlation coefficients generated by
1000 permutation events (Resampling Stats for Excel, ver-
sion 4.0). For the second type of permutation test, we cat-
egorized DID values into 5 classes of genetic distances (0.1
to 0.3; 0.3 to 0.4; 0.4 to 0.5; 0.5 to 0.6; 0.6 to 0.8). These
genetic classes follow those defined for the MM dyads by
roughly equilibrating sample sizes across categories [27].
We then compared the mean chemical distances between
these classes using randomization tests (PERM software,
[38]). Each randomization test included 10 iterations of
1000 permutation events and P values were averaged
across all iterations. We applied sequential Bonferroni
corrections to each pairwise comparison [87].
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