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Abstract Social information allows the rapid dissemination of novel information among
individuals. However, an individual’s ability to use information is likely to be dependent on
phenotypic constraints operating at three successive steps: acquisition, application, and
exploitation. We tested this novel framework by quantifying the sequential process of social
information use with experimental food patches in wild baboons (Papio ursinus). We identified
phenotypic constraints at each step of the information use sequence: peripheral individuals in the
proximity network were less likely to acquire and apply social information, while subordinate
females were less likely to exploit it successfully. Social bonds and personality also played a limiting
role along the sequence. As a result of these constraints, the average individual only acquired and
exploited social information on <25% and <5% of occasions. Our study highlights the sequential
nature of information use and the fundamental importance of phenotypic constraints on this
sequence.
DOI: 10.7554/eLife.13125.001

Introduction
Individuals require information to reduce uncertainty about their environment. Information can be
acquired in two ways (Dall et al., 2005): by interacting with the environment directly (personal infor-
mation) or by attending to the behaviour of others (social information). Individuals benefit from both
personal and social information in myriad contexts, including foraging, predator avoidance, and
mate choice (Giraldeau et al., 2002). Their use is moderated by their expense and reliability: per-
sonal information is usually reliable but costly and time consuming to collect, social information is
less costly but more likely to become outdated and unreliable (Giraldeau et al., 2002; Laland, 2004).
The low costs of social information also allow it to disseminate more rapidly across groups, such that
it can play an important role in the formation of traditions and cultures (Whiten, 2000; Castro and
Toro, 2004).

Despite the fitness benefits of information use, we have very little understanding of how individu-
als vary in their ability to capture these benefits. Indeed, theory developed to explain the costs and
benefits of information use usually assumes homogeneity within a population (e.g. Pradhan et al.,
2012). To understand individual variation in information use, either personal or social, we suggest it
is helpful to decompose the process into a sequence of three steps: the acquisition of information,
its application, and the exploitation of its benefits (Table 1). Up until now, many studies have implic-
itly assumed that these three steps are synonymous, but recent evidence indicates that information
use is substantially more complex. In particular, Carter et al. (2014) found that the time spent
acquiring social information about a task did not correlate with subsequent performance (informa-
tion application) in wild baboons (Papio ursinus), while Atton et al. (2012) found differences in indi-
vidual performance between task discovery (information acquisition) and task solving (information
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exploitation) in three-spine sticklebacks (Gasterosteus aculeatus). The recognition of three sequential

steps allows us to begin unpacking the complexity of information use, and to explore variation in the

performance of different individuals at different points along the sequence. Distinct sensory and

motor capabilities are likely to be involved at each stage, leading to different phenotypic constraints.

As a result, individuals who are effective at one step may be less so at another, with significant impli-

cations for who captures the most benefits.
The range of phenotypic constraints operating at each step might include cognitive, social,

behavioural, ecological and demographic characteristics. The importance of these constraints is likely

to differ not only between individuals but also between populations and species. Here, we focus on

social, behavioural and demographic constraints on the social information use sequence. To begin

with, we consider the social phenotype, i.e., phenotypic traits that emerge from social interactions

with others and are likely to be under selection, in this case individual dominance rank (Moore, 1993)

and position in the social network (Aplin et al., 2015). Dominant animals can aggressively monopo-

lise resources such as mates (Cowlishaw and Dunbar, 1991) and food (Koenig, 2002), limiting the

opportunities for others to apply and exploit information that they have acquired either personally

or socially about these resources. This can further lead to voluntary inhibition in the use of informa-

tion by subordinate animals, e.g., low-ranked rhesus monkeys (Macaca mulatta) only performed a

socially-learnt task when high-ranked monkeys were not present (Drea and Wallen, 1999). The

social network will likely manifest constraints on different stages of the information use sequence

depending on the type of association indexed by the network, i.e., associations according to spatio-

temporal proximity or direct interactions. For instance, positions in proximity networks may affect an

individual’s opportunities for information acquisition, assuming individuals are more likely to acquire

information from others with whom they are more frequently in visual contact (Coussi-Korbel and

Fragaszy, 1995; Voelkl and Noë, 2008, 2010), e.g., stickleback proximity networks predict the

flow of information about the location of a novel task (Atton et al., 2012). Similarly, positions in

interaction networks may limit the application and exploitation of information about resources if

social bonds are required to gain access to those resources (Henzi and Barrett, 2002; Clarke et al.,

2010), e.g., vervet monkeys (Chlorocebus aethiops) allocate their social effort to access food pro-

vided by others (Fruteau et al., 2009).
The behavioural phenotype, specifically personality, may also be important in mediating individu-

als’ acquisition, application and exploitation of social information. We have previously shown that

personality can affect both the first and second steps of the social information use sequence: calmer

baboons were more likely to acquire social information but bolder individuals were more likely to

eLife digest Animals need information to make decisions, and a quick way to get this
information is to watch what others are doing. Animals, like humans, have different social networks
that they could acquire this kind of ‘social information’ from, yet we know little about which
networks they actually use. In addition, once an animal has obtained social information, some aspect
of their lives, such as their sex or social rank, could prevent them from using it. Once again,
however, we know very little about the impact of these personal constraints.

Carter et al. found that information about the location of a highly preferred food flowed through
a social network of wild baboons that was based on who was regularly in close proximity to whom.
However, while individuals with more neighbours were better at obtaining social information about
food location, they were not better at using it. Rather, individuals were more likely to successfully
exploit such information if they were dominant, bold, male, and had good social bonds with others.

Carter et al.’s results show that the use of social information is a process with several stages –
from information acquisition, to its application, and finally its exploitation. Furthermore, the
characteristics of an individual can limit their success at each of these stages. The next step is to
figure out whether different types of social information – whether short- or long-lived, easy to
acquire or more complex – flow through the same networks and have the same personal constraints
on who can use them.
DOI: 10.7554/eLife.13125.002
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apply it (Carter et al., 2014). In geese (Branta leucopsis), personality affected the final step in the

sequence: shyer geese were more likely to exploit social information to forage where other geese

were successfully foraging (Kurvers et al., 2010). Similarly, fast exploring great tits (Parus major)

were more likely to apply social information and change their foraging behaviour to mirror a demon-

strator’s (Marchetti and Drent, 2000).
Finally, individual demographic characteristics, particularly age and sex, may affect each step of

the social information use sequence. Juveniles may be more reliant on social information because

adults have already acquired the necessary information to survive to adulthood (Galef and Laland,

2005). This prediction is supported in baboons, where juveniles spend more time than adults acquir-

ing social information about a novel food (Carter et al., 2014). Similarly, in Japanese macaques

(Macaca fuscata), novel socially-transmitted behaviours were more likely to be adopted by juveniles

(Huffman et al., 1996). Sex differences in the social information use sequence are also likely due to,

e.g., sex-specific costs of competition at resources (e.g. Aragón, 2009).
A further challenge involved in elucidating the social information use sequence is the identifica-

tion of the relevant network through which information diffuses during the acquisition phase.

Researchers have usually assumed information transfers primarily between individuals who are in

close spatial proximity (for examples, see Kendal et al., 2010; Aplin et al., 2012; Claidiére et al.,

2013). However, individuals may preferentially acquire information from others besides those to

whom they are associated as neighbours. For instance, individuals may be more attentive to those

with whom they have strong affiliative bonds (Coussi-Korbel and Fragaszy, 1995) or to lower rank-

ing animals from whom they can scrounge resources (King et al., 2009). The need to consider alter-

native networks in the identification of information diffusion paths is well illustrated by

Boogert et al. (2014), who showed that the spread of solutions to a novel foraging task in captive

starlings (Sturnus vulgaris) was better predicted by a network based on perching associations than

foraging associations.
In this study, we explore phenotypic limitations on social information use. We examined informa-

tion transmission among wild chacma baboons (Papio ursinus) by experimentally introducing ephem-

eral patches of a highly preferred food while the troops foraged naturally. We first compared which

of five networks best predicted the diffusion of information through the troops about the location of

a highly preferred food. Next, we investigated how individuals’ social, behavioural and demographic

phenotypes affected their abilities to successfully acquire, apply and exploit this social information.

Materials and methods

Study area and study species
We studied two habituated troops (J, L) of wild chacma baboons at Tsaobis Nature Park, Namibia

(15˚ 45’E, 22˚ 23’S) from May to July 2014. Two habitat types make up the Tsaobis terrain: open des-

ert and riparian woodland. The open desert is characterised by small herbs and shrubs, such as Mon-

echma cleomoides, Sesamum capense, and Commiphora virgata, in a mosaic of alluvial plains and

steep-sided hills surrounding the ephemeral Swakop River. The riparian woodland along the Swakop

is characterised by large trees and bushes, such as Faidherbia albida, Prosopis glandulosa, and Sal-

vadora persica (see Cowlishaw and Davies, 1997 for more details). The baboons’ diet largely

Table 1. The information use sequence: definitions and examples.

Stage Definition Example(s) of stage

Acquisition An individual gains knowledge 1. Gaining knowledge of the location of a food patch.
2. Gaining knowledge of the location or form of a novel task.

Application An individual uses the information that it has acquired in
a relevant (but not necessarily successful) way

1. Entering a food patch. Because information can become outdated, ‘application’
can occur even after the patch has been fully depleted, leading to no reward.
2. Using stimulus or local enhancement to manipulate a novel task, but not
necessarily successfully.

Exploitation An individual successfully uses information that it has
acquired and applied to gain a benefit

1. Gaining food from a patch.
2. Solving a novel task.

DOI: 10.7554/eLife.13125.003
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consists of berries, flowers, seedpods, and immature leaves (Cowlishaw, 1997). The baboons’ main

predator, the leopard (Panthera pardus), is rare at Tsaobis and the risk of predation is low.
The baboon troops were followed daily from dawn until dusk. We collected data on all baboons

over 2 years of age, who were individually recognisable by marks (ear notches) (NJ = 46, NJ adult

female = 18, NJ adult male = 8, NJ juvenile female = 6, NJ juvenile male = 14; NL = 48, NL adult female = 19, NL

adult male = 10, NL juvenile female = 2, NJ juvenile male = 17). Individuals younger than 2 years did not have

marks, were not individually recognisable and did not form part of the study. Dominance ranks were

assessed through aggressive interactions, recorded ad libitum, using Matman 1.1.4 (Noldus Informa-

tion Technology 2003). These data included all displacements, supplants, threats, chases and attacks

that occurred for which we could identify both the actor and recipient. If more than one dominance

behaviour occurred in one event, such as a threat followed by a chase, only one interaction was

recorded. The dominance hierarchies were strongly linear (Landau’s corrected linearity index: h’J

troop = 0.162, h’L troop = 0.183, NJ = 618, NL = 856, p<0.001 in both cases). Dominance rank was

expressed relatively (which controls for group size), using the formula 1-[(1-r)/(1-n)] where r is the

individual’s absolute rank and n is the group size, and ranges from 0 (lowest rank) to 1 (highest

rank). Personality was indexed by boldness, estimated by presenting individuals with a novel food (2

cm2 pieces of potato or sweet potato dyed blue) while foraging naturally alone and quantifying the

time that the individuals spent investigating—handling and smelling—the novel food (for further

details, see Carter et al., 2012b). Individuals who investigated the novel food for longer were con-

sidered bolder. We tested individuals’ boldness only once during the study period, but have previ-

ously found this test to be repeatable over three years (Carter et al., 2012b) and correlated with

subjective ratings of boldness (Carter et al., 2012a). Age (in years) was estimated from a combina-

tion of known birth dates and dental patterns of tooth eruption and wear (see below). Unmarked

immigrant males’ ages were estimated at 9 years old when they appeared in the study troops, as

this is the age most males were observed to transfer from our study groups.

History of the study population
The Tsaobis baboons are a wild population that has been under study every austral winter since

2000. The field site is on private land, and the baboons have minimal contact with people other than

the research team. The troops forage entirely naturally, except during specific research events that

involve troop capture or feeding experiments. These occur very rarely (five occasions over the past

10 years), are short in duration (2–4 weeks), and entail the provisioning of the entire troop with corn

kernels at a single site at dawn (e.g., King et al. 2008; Carter et al., 2013). Since 2009, individuals

foraging alone have also been given the opportunity to sample a small, novel, food item (e.g., a slice

of apple) at a random place and time, on average once per year, as a personality test (Carter et al.,

2013).
During troop captures, all troop members are captured at dawn in individual cages baited with

corn. They are sequentially anaesthetised using tiletamine–zolazepam and the entire troop is proc-

essed within a day, to be released together the following morning when fully awake. While the

baboons are anaesthetised, age is estimated through dentition. Tooth eruption schedules are used

to assign age up to molar eruption (Kahumbu and Eley, 1991), while age beyond this point is esti-

mated from molar wear. Validation of this approach using individuals captured on multiple occasions

(N = 19 over periods of 1–5 years) to compare estimated versus known age differences between

captures indicates these estimates are robust (the mean difference between the observed and esti-

mated time periods does not differ from zero: one-sample t-test, p>0.05; G. Cowlishaw, unpub-

lished data).

Quantifying the social networks
Individual associations were quantified using three proximity measures and two interaction

measures.

Proximity networks
In the first case, proximity data were collected from scans of individuals between dawn and dusk

during all behavioural states. We recorded subgroups (hereafter ‘groups’) within each troop accord-

ing to three proximity-based definitions of group membership. To ensure that groups were sampled
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randomly and individuals were sampled evenly (and there was no bias against less social individuals),

we quantified the groups associated with given ‘focal’ individuals chosen randomly from the troop

membership. Because the troops can spread over 1 km2 while foraging and finding particular indi-

viduals can be time consuming, the observer (MTT) searched for one of the first five individuals on

the randomised list of baboons to optimise the number of independent groups sampled each day.

Once a focal individual was found and its group membership quantified, that individual was removed

from the list until all remaining individuals had been found and a new randomised list started. If a

focal baboon had already been recorded in an already-sampled group (i.e., group membership had

not changed), that individual was not sampled for an hour to ensure that the sampled groups consti-

tuted independent data. We are confident that each sampled group was independent and as such

have not pooled data within arbitrary time periods (c.f. Carter et al., 2009). We recorded group

composition at each scan for each of our three proximity rules: (1) the identity of all individuals within

a 10 m radius of the focal individual (10 m scans), (2) the identity of all individuals whose most

peripheral member was within 5 m of another individual of the group (5 m chain scan) and (3) the

nearest neighbour within 5 m of the focal individual (nearest neighbour scans) (Figure 1)

(Castles et al., 2014). Individuals who did not have a neighbour within the given distance for each

proximity rule were recorded as alone.

Interaction networks
Interaction data were recorded ad libitum by observers between dawn and dusk across all individu-

als as they moved continuously through the troop. On any given day, 1–4 observers were present

with each troop, from a total pool of 7 observers for the field season. Observers collected ad libitum

data while performing other data collection tasks at the site that required them to search for every

individual every day (to perform the daily census, to perform the scans [this study] and while doing

focal follow observations [not this study]) and to estimate group spread and activity every 30 min.

Given that the observers were required to move constantly throughout the troop to monitor all indi-

viduals, our ad libitum data collection is not biased to more spatially central and/or obvious individu-

als and as such we have made no correction for individual baboon observability. New observers

received training from experienced observers (who had worked with the baboons over at least two

prior field seasons) until they could unambiguously and correctly identify dominance interactions

(grooming was never ambiguous). No formal inter-observer reliability tests were done for ad libitum

data, but we have successfully validated our training system for new observers collecting focal data

in previous studies. If the interaction was ambiguous (as can sometimes occur during coalition forma-

tion), the data were not recorded.
We recorded both grooming and dominance interactions, noting the direction of the interaction.

To quantify the dominance network, we used the same data as that collected to determine

Figure 1. A visual representation of proximity methods used to define a connection. The black arrow represents a

connection via the 5 m nearest neighbour rule; the white lines, connections via the 5 m chain rule; and the white

circle represents the 10 m threshold distance for a connection (measures not to scale).

DOI: 10.7554/eLife.13125.004
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dominance ranks. This is different to and independent of the analysis of the dominance ranks

because it incorporates the frequency of interactions (in the case of weighted networks) as well as

their direction (in the case of directed networks) (see below). To avoid pseudoreplication in the col-

lection of the interaction data, an independent grooming bout was recorded when the partner iden-

tities of the dyad changed or the dyad stopped grooming and moved to a different location. As

such, we did not record reversals of dyads within bouts (i.e., if individual A groomed B, and B then

groomed A without moving to a new location, B was not recorded as grooming A). Furthermore, as

sequential dominance interactions were pooled as one interaction (see above), only independent

dominance events form these networks.
In total, we collected 6657 proximity scans including 2220 10 m scans (NJ = 1091, NL = 1129,

median scans per individual = 24, range = 13–24 scans), 2214 5 m chain scans (NJ = 1085, NL =

1129, median = 24, range = 13–24), and 2223 nearest neighbour scans (NJ = 1089, NL = 1134,

median = 24, range = 13–24). We collected 23–24 scans for each individual for each proximity rule

except for three individuals who were not present for the entire field season due to death or immi-

gration (N = ~ 13, 14, 17 scans each), but that were present during most of the patch experiments.

We recorded 2768 grooming interactions in total (NJ = 1331, NL = 1437; median per initiator = 16.0,

range = 1–111). Finally, we recorded 1474 dominance interactions in total (NJ = 618, NL = 856;

median per initiator = 8.5, range = 1–116).
Social networks are made up of nodes (individuals) and edges (connections between the nodes).

Network edges can have both weight and directionality. Weighted data, which we use in all our net-

works, indicate that the frequency of interactions between individuals is recorded, rather than a

binary indicator of whether or not two individuals ever interacted. Directionality data indicate the

degree to which interactions between individuals are reciprocal. Thus, undirected edges assume

reciprocality, i.e. the relationships between dyads are equal and the association matrix is symmetrical

along its diagonal, while directed edges assume non-reciprocality, e.g. A may groom B more than B

grooms A and the association matrix is not symmetrical. From the records of group membership for

the 10 m and 5 m chain rules, we created an undirected association matrix for each troop for each

method using the simple ratio index (SRI): x/(x + yab + ya + yb) where x is the number of times indi-

viduals A and B have been observed in the same group, yab is the number of times individuals A and

B have been observed in separate groups, ya is the number of times A has been observed without B

and yb is the number of times B has been observed without A (Cairns and Schwager, 1987). The

nearest neighbour data, like the interaction data, are directional (A may have B as a nearest neigh-

bour, but B’s nearest neighbour may not be A). Thus, for these datasets, we created directed associ-

ation matrices which included the frequency with which A was the ’actor’ towards B. For nearest

neighbour, these frequencies represented the count of times that A had B as its nearest neighbour;

for grooming, the count of times A groomed B; for dominance, the count of times A was aggressive

towards B. However, dyads in the directed networks may acquire social information from each other

equally. As such, we also analysed all our directed networks as undirected networks (by summing

the interactions given and received by a dyad so that the association matrix was symmetrical along

the diagonal). In total, across the 5 proximity and interaction datasets, this resulted in 5 symmetric

and 3 non-symmetric (directional) weighted association matrices for each troop, resulting in a total

of 16 association matrices (see Figure 2 for diagrams of the networks according to the 5 association

rules).
For two of the social networks (see below), we calculated two individual-level measures of net-

work centrality hypothesised to be important for socially transmitted information (Croft et al.,

2008): degree strength and betweenness. Degree strength (hereafter strength) sums the weighted

edges each individual has with all other individuals in the network. Higher values indicate individuals

who have more and/or stronger connections to others and are predicted to have greater access to

information accordingly. Betweenness calculates the (weighted) number of shortest paths that travel

‘through’ a particular individual. Individuals with high betweenness connect different parts of net-

works and are therefore predicted to have greater access to information. We calculated both meas-

ures of centrality for the proximity, grooming and dominance networks using the igraph package

(Csardi and Nepusz, 2006) in R (Team, 2011).
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Figure 2. Networks diagrams created from the 5 association rules in two troops of baboons. Nodes (J troop:

purple nodes, panels a-e; L troop: green nodes, panels f-j) represent individual baboons and edges between them

indicate the strength of the measured relationship (see key). Presented are the networks based on the 10 m rule

(a, f), 5 m chain rule (b, g), directed nearest neighbour rule (c, h), directed grooming interactions (d, i) and directed

dominance interactions (e, j). Adults are represented by darker nodes, juveniles by lighter nodes (though we note

that age was analysed as a continuous variable). Node size represents individuals’ ranks, where larger nodes are

higher ranks. Node positions are conserved between network diagrams in each troop.

DOI: 10.7554/eLife.13125.005

The following figure supplement is available for figure 2:

Figure supplement 1. The relationships between social network metrics (strength and betweenness) within and

between social networks created with five different rules for defining a connection between individuals.

DOI: 10.7554/eLife.13125.006
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Information diffusion experiments
We experimentally assessed the diffusion of information about the location of newly discovered

food resources by introducing patches of a highly preferred food, maize kernels, to the baboons.

Two considerations were key to the design of the patch presentations: first, that the presentations

were representative of naturalistic diffusions of information, such as about the location of a nest of

eggs, and second, that the baboons did not learn to associate the observers with food. As such, one

observer (AJC) created food patches by moving ahead of a foraging troop and scattering 52.9 ±

5.3 g of maize kernels over a 0.5 m2 core area (with a little surrounding scatter enlarging this area to

no more than 1 m2), in the direction of travel of the troop. To avoid the baboons observing the

patch being created, the observer either (i) quickly scattered the kernels as she was walking or (ii)

pretended to get something from her field backpack while scattering the kernels behind her bag. In

all cases, the baboons did not see the kernels being placed. Furthermore, because the observer was

present in the troops for many hours preceding and following these trials, the baboons did not asso-

ciate the camera nor the waiting behaviour of the observer with the presence of the patches.

Because the foraging paths of the baboons are unpredictable, and the baboons typically have to be

within 2 m of the patch to see the corn kernels (median, range 0–8 m, N = 38 trials with recorded

detection distances), there was variation in the spatial position of the individual who discovered the

patch. In 28 of the 50 experiments (56%), it was an individual at the leading edge of the group that

found the patch. In 11 experiments (22%), it was an individual at the side periphery and in a further

11 (22%) an individual in the middle-back of the troop. In total, 37 different baboons (J = 19, L = 18)

discovered the patches (median = 1 time, min = 1, max = 5). Not every patch that was put out was

found by a baboon, either because passing individuals failed to detect it or the troop changed their

direction of travel (N < 10). In such cases, the patches were picked up by the observer after the

baboons had left the area, and excluded from the analysis. In total, we performed 50 successful

information diffusion experiments (25 per troop).
One or two observers (which always included AJC) initially stood 15 m away from the patch and

recorded each experiment using a video camera trained on the patch and surrounding area to dic-

tate the identity and behaviour of any individuals coming within 25 m of the patch. The observer

moved as required during the experiment to identify baboons. We recorded the identities of all indi-

viduals who (i) gazed at an individual in the patch, (ii) entered the patch and (iii) ate food from the

patch (see Videos 1 and 2). These data were used to quantify social information (i) acquisition, (ii)

application and (iii) exploitation, respectively. Note that the prolonged gazes observed during infor-

mation acquisition were clearly distinct from the

brief glances used in the routine monitoring of

conspecifics, with most animals approaching and

halting at the patch to watch its occupants (e.g.,

Videos 1–3). The experiment was conducted 25

times per troop. We subsequently counted the

number of times each individual was recorded

performing (i) – (iii) above, excluding those cases

when they discovered the patch. On two occa-

sions (in 50 experiments) an individual who

acquired social information could not be identi-

fied before they left the vicinity of the patch, but

otherwise we were able to identify all individuals

who acquired, applied and exploited social

information.

Statistical analyses
Identifying the diffusion path of
information
To identify the network that best predicted infor-

mation transmission, we conducted Order of

Acquisition Diffusion Analyses (Hoppitt et al.,

2010). OADA models information transmission

Video 1. Information diffusion experiments. The video

shows rapid diffusion of information about the location

of the food patch after its initial discovery. In the first

experiment, several individual baboons successively

enter the patch and are supplanted by more dominant

individuals. In the second experiment, the patch is

discovered by a low ranking female and then

monopolised by high ranking juvenile male. The

diffusion path is comparatively short. Please note that

the videos were used to facilitate data extraction by

dictating identities during rapid diffusions; we did not

aim to capture all activity in the field of view of the

camera.

DOI: 10.7554/eLife.13125.007
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by social connections versus asocial learning and fits the model estimates to the observed data
(Franz and Nunn, 2009; Hoppitt et al., 2010). In the social transmission model, the rate at which
naı̈ve individuals acquire information from informed individuals is proportional to the connection(s)

they have to those individuals. In the asocial model, information is acquired independently of the
social network. The parameter s estimates the social transmission relative to asocial transmission and
ranges from 0, when there is no social transmission of information, to 1, when all information is trans-

mitted socially (Hoppitt et al., 2010). In natural situations, s 6¼ 1 because at least one individual
must acquire personal information for it to be socially transmitted. The social and asocial models are
fitted to the observed order of diffusion data using maximum likelihood, and the model with the

highest support, by comparison of Akaike Information Criteria corrected for small sample size (AICC)
(or a likelihood ratio test), indicates the most likely route of information diffusion.

Previous studies applying network-based diffusion analysis to food patch discovery in social forag-
ers have allowed for an ‘untransmitted social effect’ to accommodate the possibility that order of
entry into a patch might not only reflect the pattern of social learning among associates but also the

order in which the associates personally discover the patch (Atton et al., 2012; Webster et al.,
2013). No such allowance was necessary here, because the transmission of social information about
patch location was assessed directly through the visual monitoring of conspecifics in the patch rather

than through the order of patch entry.
We fitted OADA models for the 50 diffusion events specifying each diffusion experiment with a

task identity, each troop as a group and ties for individuals who acquired information simultaneously.

We compared both additive and multiplicative OADA incorporating individual-level variables to con-
trol for possible sources of individual variation in asocial learning ability. We performed eight OADA
models with social transmission (one for each of our eight networks) and one without social transmis-

sion. All nine models included rank, boldness, age and sex as individual-level variables and to deter-
mine the best model, we compared AICCs. After determining the network that best predicted the
transmission of information (the 10 m network with multiplicative effects of the individual-level varia-

bles, see Results), we assessed which individual-level variables contributed to asocial learning by
comparing the AICCs of models with all combinations of all individual-level variables, following
Hoppitt and Laland (2013). We estimated the effect size of each individual-level variable using

Video 2. Information acquisition, application and

exploitation. The video shows an adult male

monopolising the food patch, surrounded by juveniles

who are obviously aware of the location of the patch,

but cannot enter because of their lower rank. After the

patch is depleted, the adult male exits the patch and

many of the individuals subsequently apply the

information they have acquired, even though it is

outdated. One juvenile female (just off the bottom of

the screen), has the lowest rank in the troop and could

not apply the social information she had acquired. In

this case, there was no social information exploitation,

because the patch discoverer (the adult male) depleted

the patch.

DOI: 10.7554/eLife.13125.008

Video 3. Tolerated queuing, co-feeding and vocal

protest. The first video (tolerated queuing) shows an

adult male monopolising the food patch, with adult

females and juvenile males and females queuing to

check the patch after the male leaves. They enter the

patch in the same order in which they were queuing.

Two lower ranking adult females leave the area after

queuing without entering the patch, demonstrating

these females’ unwillingness to apply the social

information they had acquired after patch depletion.

The second video (tolerated co-feed followed by

protest) shows the initial patch discovery by an adult

female who has come within 1 m of the patch (directly

after she has been startled by the higher-ranking

juvenile male foraging behind her). The pair

subsequently co-feed in the patch, before the juvenile

male vocally protests with pant-grunting.

DOI: 10.7554/eLife.13125.009
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model averaging of those models with a DAICc"2 (all of which were multiplicative models), but we

present the AICCs of all multiplicative and additive models for comparison.

Identifying phenotypic constraints on social information use
To identify the phenotypic constraints on the social information use sequence, we investigated

whether individuals’ (i) acquisition, (ii) application and (iii) exploitation of social information were

affected by their phenotypes. Phenotypes were quantified according to social traits (dominance

rank, network centrality), behavioural traits (personality), and demographic traits (age, sex). Two dif-

ferent measures of network centrality were used, namely the individual strength scores for the 10 m

proximity and directed grooming networks, generating six phenotypic predictors in total. Individual

betweenness scores were not used because they were strongly correlated with their corresponding

strengths in almost all cases (Table 2; Figure 2—figure supplement 1). We chose to use the

strengths and betweennesses from the 10 m proximity and directed grooming networks, because

these were the best proximity and interaction network predictors of information diffusion respec-

tively (see below). The 10 m proximity and grooming strengths were only marginally correlated with

each other (r = -0.29) and below the level of collinearity concern (Dormann et al., 2013). All other

combinations of phenotypic variables were similarly below the level of collinearity concern (Table 3).
We ran three generalised linear mixed models (GLMMs) in the lme4 package (Bates and Sarkar,

2007) with a Poisson link with the count of social information (i) acquisition, (ii) application and (iii)

exploitation as the responses and troop as a random effect. For each response, we started with a

full model comprising all six phenotypic predictors, and used backwards elimination of non-signifi-

cant terms until we obtained the minimal model. Dropped terms were added to the minimal models

to check significance.
All data used in these analyses are available online (Carter et al., 2015).

Results
All individuals in both troops acquired social information in at least one experiment (barring one indi-

vidual who acquired personal information of one patch, but died in the last week of experiments).

On average (median), 10 individuals obtained information about the location of the patches (range =

2–27 individuals) in each diffusion experiment (see Video 4 for an example of information diffusion

through a network).

Identifying the diffusion path of information
We found widespread evidence for the social transmission of information about the location of food

patches (Table 4). All proximity networks and grooming networks had strong support for predicting

the diffusion of information between group members in comparison to the asocial transmission

model (DAICC for the social transmission model with the lowest AICC versus the asocial model =

192.9). In all cases, the multiplicative models had a better fit than the additive models. The domi-

nance networks, however, had little support in either case. The social network that best predicted

the transmission of information was the 10 m network (AICC = 3968.9), followed by the 5 m chain

network (AICC = 3993.4, DAICC = 24.5). These were followed by the undirected nearest neighbour

network (DAICC = 82.1), which performed better than the directed neighbour network (DAICC =

114.4). All proximity networks were better at predicting diffusion than the grooming networks

(Table 4). For both grooming and dominance, there was minimal difference in the performance of

the models between the directed and undirected networks (DAICC grooming = 3.6, dominance =

0.2). The social transmission parameter of the best multiplicative model (10 m proximity, s = 0.999)

suggests that, following patch discovery, all subsequent discoveries were via social information. This

was confirmed when comparing all possible combinations of individual-level variables in the 10 m

model as all four of the best candidate models (DAICC = 0) were multiplicative and the best additive

model was comparatively poor (DAICC = 9.85) (Supplementary file 1). Model-averaged estimates of

the individual-level variables calculated from the multiplicative OADA models indicated that rank (b

= 0.26), sex (b = 0.15) and age (b = -0.01) affected information diffusion, while boldness did not (b =

0.00), such that more dominant, younger male baboons were more likely to learn asocially about

patch locations (see Table 5 for a list of the parameter estimates of the competing models).

Carter et al. eLife 2016;5:e13125. DOI: 10.7554/eLife.13125 10 of 21

Research Article Ecology

http://dx.doi.org/10.7554/eLife.13125


Identifying phenotypic constraints on social information use
We found that individuals’ phenotypes limited the acquisition, application and exploitation of social
information about the location of food patches (Table 6, Figure 3). Proximity strength was the only
predictor of information acquisition: more central baboons acquired social information more fre-
quently. Proximity strength also showed a similar pattern with information application, but not
exploitation. Information application and exploitation were further limited by sex and grooming
strength, with males and more central individuals in the grooming network more likely both to apply
and exploit acquired information. In combination with sex, dominance rank played a further limiting
role on individuals’ exploitation of information, such that females of low rank were most limited in
their exploitation of patches. Finally, individuals’ behavioural phenotypes, i.e., boldness, also influ-
enced information exploitation. Overall, individuals that were better connected in the 10 m network

were more likely to acquire social information,
but it was higher ranking males who were more
likely to exploit this information.

As a result of these constraints on successive
steps in the social information use sequence,
individuals only acquired social information
about the patches on average (median) 6 times,
applied social information 2.5 times, and
exploited social information once (across a total
of 25 trials per group). However, because of
phenotypic variation, there was a substantial
range around these medians. Thus, while the
average individual acquired and exploited social
information on <25% and <5% of occasions,
respectively, others were able to acquire and
exploit information on >50% and >35% of occa-
sions, or not at all, depending on their
phenotype.

Discussion
Our study suggests that the route of information
flow about ephemeral food patches is most
closely matched by the 10 m proximity network,
although the 5 m chain and nearest neighbour
networks (both directed and undirected) also
provided a good approximation. These results
are consistent with several previous studies

Table 2. Results of Spearman rank correlations testing whether there is a correlation between
strengths and betweennesses in social networks created with different proximity and interaction rules.
Presented is the rule, test statistic (S), rho (r), and p-value.

Rule S r p

5 m chain 217907.6 -0.57 <0.001

10 m 220939.0 -0.59 <0.001

Nearest neighbour directed 81586.8 0.41 <0.001

Nearest neighbour 9218.6 0.43 0.003

Groom directed 98412.9 0.30 0.005

Groom 15346.0 0.05 0.72

Dominance directed 67342.1 0.51 <0.001

Dominance 7950.4 0.51 <0.001

DOI: 10.7554/eLife.13125.010

Video 4. Information diffusion through a social

network. The animation shows the diffusion of

information about the location of one of the food

patches through the 5 m proximity social network of L

troop. The nodes are scaled to the ranks of the

individuals; the lines connecting the nodes are

indicative of the strength of the connection between

individuals. The nodes turn from pink to purple as they

acquire social information about the location of the

food patch by the initial discoverer (the original purple

node).

DOI: 10.7554/eLife.13125.011
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indicating the importance of spatiotemporal associations for information flow (e.g., great tits:

Aplin et al., 2012; three-spine sticklebacks: Atton et al., 2012). While the most appropriate proxim-

ity network to capture information flow will vary depending on the type of information, the social for-

ager, and the environment, our study emphasises the need to recognise that not all networks will be

equally applicable. These findings build on the suggestions of previous authors (Lehmann and Ross,

2011; Madden et al., 2011; Castles et al., 2014), and provide the first quantitative demonstration

that multiple networks should be considered when studying information transmission. In the present

analysis, the grooming networks also provided a good match to the pattern of information flow, sug-

gesting that individuals may be more likely to monitor those with whom they share strong social

Table 3. Correlation matrix of the phenotypes used in the analyses. Presented are the Spearman’s
rank correlation (S) estimates.

Phenotype Sexa Age Rank Boldness Proximityb Groomc

Sex 1

Age -0.49 1

Rank 0.43 0.16 1

Boldness 0.16 -0.55 -0.24 1

Proximity 0.29 -0.60 -0.02 0.51 1

Groom -0.58 0.63 0.15 -0.46 -0.29 1

acoded as an integer: females = 0, male = 1.
b, cRefer to strength in the identified network.

DOI: 10.7554/eLife.13125.012

Table 4. Comparisons of the additive and multiplicative OADA models with social transmission
versus the asocial learning model.

Model Add/Multi Predictor network df LogLik AICC

Social transmission Add 10 m 5 1984.7 3979.4

Social transmission Multi 5 1979.4 3968.9

Social transmission Add 5 m 5 1992.9 3995.9

Social transmission Multi 5 1991.7 3993.4

Social transmission Add NN directed 5 2037.4 4085.0

Social transmission Multi 5 2036.6 4083.3

Social transmission Add NN 5 2024.4 4059.0

Social transmission Multi 5 2020.5 4051.0

Social transmission Add Groom directed 5 2045.7 4101.4

Social transmission Multi 5 2043.0 4096.1

Social transmission Add Groom 5 2045.2 4100.6

Social transmission Multi 5 2044.8 4099.7

Social transmission Add Dom directed 5 2076.8 4163.8

Social transmission Multi 5 2076.8 4163.8

Social transmission Add Dom 5 2076.6 4163.3

Social transmission Multi 5 2076.7 4163.6

Asocial learning - - 4 2076.8 4161.8

The predictor networks were the 10 m rule (10 m), 5 m chain rule (5 m), both of which were undirected, directed

and undirected nearest neighbour rule (NN), directed and undirected grooming interactions (Groom) and directed

and undirected dominance interactions (Dom). Presented are the models, degrees of freedom (df), -log-likelihoods

(LogLik), corrected Akaike information criteria (AICC). Add/Multi refers to whether the model was additive (Add) or

multiplicative (Multi).

DOI: 10.7554/eLife.13125.013
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bonds, irrespective of the symmetry of those bonds (the model results for the undirected and

directed networks were very similar). However, the absence of an effect of grooming strength on

information acquisition at the individual level (Table 6) suggests that such effects are relatively weak

in comparison to those of spatial proximity. In contrast, the dominance networks were entirely unre-

lated to information flow. Since information flow required visual observation, this suggests that the

monitoring of conspecifics is independent of dominance rank. A recent study of social attention in

wild vervet monkeys reported a similar pattern (Renevey et al., 2013). This may reflect the fact that

dominants and subordinates monitor each other equally, albeit for different reasons: dominant ani-

mals seek to scrounge the food discoveries of others, while subordinates seek to avoid aggression.
In our analysis of phenotypic constraints on social information use, we identified three steps in

the information use sequence: acquisition, application, and exploitation. In the first step, we found

that information acquisition was independent of almost all phenotypic traits tested, i.e., age, sex,

Table 5. Parameter estimates of individual-level variables of the competing OADA models for asocial
effects on social transmission in the 10 m networks.

Model Coefficient Estimate S.E.

1 Social transmission 0.999

Sex 0.132 0.107

Rank 0.498 0.174

Age -0.024 0.012

2 Social transmission 0.999

Boldness 0.001 0.001

Age -0.020 0.011

3 Social transmission 0.999

Sex 0.328 0.086

4 Social transmission 0.999

Sex 0.250 0.093

Rank 0.353 0.158

Presented are the bounded social transmission estimates (for completeness), the fixed effects in the models and

their standard errors (S.E.).

DOI: 10.7554/eLife.13125.014

Table 6. Parameter estimates of the minimal models investigating the effect of proximity and grooming strength on social information
(i) acquisition, (ii) application and (iii) exploitation.

Response Predictor Effect size S.E. t P

Social information acquisition Intercept 0.23 0.21 1.11 0.27

Proximity strength 0.66 0.07 8.87 <0.001

Social information application Intercept -1.30 0.38 -3.40 <0.001

Proximity strength 0.65 0.10 6.45 <0.001

Grooming strength 0.01 <0.001 4.74 <0.001

Sexa 0.84 0.15 5.48 <0.001

Social information
exploitation

Intercept -2.43 0.39 -6.17 <0.001

Grooming strength 0.02 <0.001 4.67 <0.001

Sexa 0.73 0.33 2.21 0.03

Boldness 0.01 <0.001 3.74 <0.001

Rank 1.39 0.51 2.71 0.01

Presented are the predictor variables, their effect sizes, standard errors (S.E.), t values and p-values.
aReference category: female

DOI: 10.7554/eLife.13125.015
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Figure 3. The relationships between social network centrality and successive steps of the social information

process. The relationships between social information (c, d) acquired, (e) applied and (f) exploited by wild

baboons and their degree strengths in the social networks. Presented are the proximity networks from which

degree strengths were calculated for (a) J and (b) L troops, where nodes represent individuals, node size

represents the rank of the individual, and node luminance represents the number of times the individual acquired

information (darker nodes acquired social information on more occasions; this colouration is conserved throughout

the figure). Lines connecting nodes represent the strengths of the connections between dyads where thicker lines

are stronger connections (see legend). Presented below the networks is the relationship between (c, d) social
information acquired in (c) J and (d) L troops, (e) social information applied and (f) social information exploited

(both troops plotted together).

DOI: 10.7554/eLife.13125.016
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rank, personality, and social bonds (grooming strength). The only important trait was individual cen-

trality in the 10 m proximity network. This suggests that visual information about the patch was inex-
pensive to collect, and limited only by an individual’s spatial associations with other group members.

Where the acquisition of social information is more costly, we might expect other phenotypic traits
to become important. For instance, among juvenile chimpanzees (Pan troglodytes), sex differences

in attentiveness are believed to explain why females spend more time observing, and are faster to
learn, the challenging skill of ‘termite fishing’ (Lonsdorf, 2005).

In the second and third steps of the information use sequence, the application and exploitation
of information were closely linked. Both steps involved patch entry, but the latter also involved the

successful capture of foraging benefits from the patch. The similarities and dissimilarities in pheno-
typic predictors between the two models are highly informative, not only with respect to under-

standing the different constraints that can operate along the information use sequence, but also in

elucidating how information use mediates the acquisition of monopolisable resources. The latter is
possible because our experimental design makes information exploitation synonymous with resource

acquisition. Clearly, in many other cases, information exploitation will be unrelated to monopolisable
resources but rather involve other types of knowledge, such as foraging skills, predation risk, and

mate compatibility. In these instances, the phenotypic constraints on information application and
exploitation may be quite different to those observed here.

We begin our assessment of phenotypic constraints on information application and exploitation
with dominance rank. Dominant animals were far more likely to successfully exploit social informa-

tion, because they were able to monopolise food patches. Indeed, as information about the patch
spread, increasingly dominant animals would become informed and enter the patch, supplanting

lower ranked occupants and preventing others from entering subsequently until the patch was
exhausted. This pattern is consistent with how dominant animals scrounge from others in this popu-

lation (King et al., 2009; Marshall et al., 2012) and across social foragers generally (Barta and Gir-

aldeau, 1998). Surprisingly, however, dominance did not predict information application. The
reason for this is that many subordinates also entered the patch, but only after the dominant animal

had left (see Video 2). Some of these animals were late arrivals, but a large number would be wait-
ing (‘queuing’) nearby for the dominant animal to leave. Since the patch was largely depleted when

the dominant animal left, the subsequent patch entries by subordinates imply the application of out-
dated information, at a surprisingly large scale given over half of those entering the patch failed to

exploit it. One possible explanation for such apparently maladaptive behaviour is that, while

baboons are able to collect social information about patch location, they are unable to collect ‘pub-
lic’ information about patch quality. A similar pattern has been observed in three-spined sticklebacks

(Coolen et al., 2003). However, other experimental work in this population indicates that baboons
are able to collect such information (Lee, 2015). A more likely explanation is that lower ranking indi-

viduals are aware that the patch is largely empty, but there is minimal cost in entering it and sifting

through the sand in case any food items remain. Indeed, in a small number of cases, late arrivals did
find a small number of kernels that had been overlooked.

Proximity strength remained a strong predictor for information application, as might be
expected: individuals had to find the patch before they could enter it. However, because only a very
small fraction of those who acquired and applied the information were able to benefit from it, the

effect of proximity strength was lost in information exploitation. Grooming strength, however, was

important for both information application and exploitation, possibly reflecting the role that social
bonds play in tolerance at feeding sites, both in this baboon population (Sick et al., 2014) and in pri-

mates more generally (Ventura et al., 2006; Tiddi et al., 2011). Nevertheless, tolerance of direct
co-feeding at the patch (patch sharing) was rare in this experiment: of the 293 patch entries

observed in the 44 experiments for which these data could be extracted, only 14 (4.8%) resulted in
co-feeding (where two or more individuals fed simultaneously from the patch). Moreover, in 4 of

these cases (including one group of 3 co-feeders), there were vocal protests of intolerance from one

or both parties (see Video 3 for an example of a vocal protest during co-feeding). Thus toleration of
co-feeding could be said to occur on only 9 occasions (3.1%). Instead, the tolerance observed in this

experiment was primarily of close proximity of individuals to the patch, which allowed individuals to
queue for and quickly enter the patch on a dominant’s exit (see Video 3). There are thus two strate-

gies for information application to occur, both of which may rely on social bonds: tolerated co-feed-
ing and tolerated (close-proximity) queuing. A change in the dimensions of the patch to allow more
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foragers concurrently to occupy it, and thus a greater possibility of tolerated co-feeding, may show

a greater effect of grooming strength on both social information exploitation and application.
Sex also played a role: females were less likely to apply and exploit social information. As we con-

trol for rank in the analyses, this finding may reflect female reproductive constraints. Previous work

on nine-spine sticklebacks (Pungitius pungitius) has indicated that female gravidity can influence the

use of social information (Webster and Laland, 2010). In our case, many of the observed females
were either pregnant or lactating, and females in these states experience higher foraging demands

(Silk, 1987; Barrett et al., 2006), potentially making them less willing either to forego valuable for-
aging time to queue for patch entry (information application) or to spend excessive time searching

for food once in the patch (information exploitation). Shy animals also showed lower rates of infor-

mation exploitation, presumably because they were more nervous and therefore spent more time in
the social monitoring of conspecifics (Edwards et al., 2013). The observation that bolder animals

were more likely to successfully exploit information is consistent with the finding that bolder animals
are also more likely to demonstrate social learning in this population (Carter et al., 2014). In com-

parison, Harcourt et al. (2010) found no effect of boldness on social information use in three-spined

sticklebacks. However, that study only went as far as the information application step of the informa-
tion use sequence. We only found an effect of personality in the final information exploitation step.

Phenotypic variation was also observed in asocial learning. Younger, more dominant males were
more efficient at finding food patches. The most likely explanation for this pattern is that dominant

juveniles were more likely to be at the leading edge of a foraging group, and therefore the first to
encounter the patches. Similarly, juvenile ring-tailed coatis (Nasua nasua) occupy positions at the

leading edge of their foraging groups (Hirsch, 2011). The multiplicative effect further suggests that
the probability of younger dominant males occupying this spatial position increased the better con-

nected they were in their social network. Notably, we found no effect of age on social information

use. While this is not surprising at the information acquisition stage, where there were no phenotypic
constraints other than network position, it is more surprising for information application and exploi-

tation, especially since juveniles appear to show greater propensity for social learning than adults,
both in baboons (Carter et al., 2014) and more generally (e.g., meerkats, Suricata suricatta:

Thornton and Malapert, 2009). However, this propensity usually refers to social learning tasks

involving novelty or complexity, reflecting the tendency for juveniles to be more curious and explor-
atory about their environment (Reader and Laland, 2001; Kendal et al., 2005; Benson-Amram and

Holekamp, 2012). In our case, the task simply involved entering and exploiting a patch of familiar
food, and for such a task it might be expected that individuals of all ages would show equal abilities.

Our study raises a further point about the type of social information that is transmitted. We pro-
vided individuals with the opportunity to acquire social information about the location of a highly

preferred food source in a novel location. These novel patches were rapidly depleted and the social
information quickly became outdated. Such short-lived, ephemeral information may be easy and

cheap to acquire and, as we have found, more likely be transmitted through proximity rather than

interaction networks. Whilst our results support previous findings that proximity social networks are
important for the transmission of ephemeral and/or easy-to-acquire information among individuals in

the wild (Aplin et al., 2012), evidence from starlings suggests that more complex information dif-
fuses through alternative networks. Boogert et al. (2014) showed that information about novel for-

aging skills diffused through the perching rather than foraging social networks. Whilst it is

challenging to determine the difficulty with which species acquire different types of information
(Griffin et al., 2015), research is needed to elucidate how the type of social information influences

how quickly and through which networks it is transmitted. In the baboon system, we might similarly
expect that social information that takes longer to acquire and/or process will transmit through dif-

ferent networks to those that transmit easy-to-acquire information.
Our finding that phenotype limits information use builds on previous work indicating that individ-

ual state, such as uncertainty or the possession of outdated information, can influence social learning
strategies (reviewed in Rendell et al., 2011). Our study extends this work, revealing fundamental

individual differences in the ability to use social information. Decomposing social information use

into three constituent steps has further illuminated how these individual differences limit information
use. The implications of such sequential phenotypic constraints are manifold. We conclude by con-

sidering two points. First, only a small number of individuals who acquire or apply social information
may successfully exploit it. Similarly, Racine et al. (2012) report that ring-billed gulls (Larus
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delawarensis) may acquire social information about the location of food resources but be unable to

apply it because of parenting constraints. Second, where phenotypic traits are expressed in relation

to conspecifics (e.g., dominance rank, network position), social information use will vary markedly

between social environments. For instance, in a captive setting where competition is minimised (e.g.

by testing individuals when isolated and not at risk of aggression: Call et al., 2005) (c.f. Drea and

Wallen, 1999), subordinate animals may show a propensity for copying others (e.g. Kendal et al.,

2015), but in the wild, where subordinates are more vulnerable to aggression and where food

resources are relatively more valuable, subordinates may rarely copy others. Together, these two

points highlight a critical disjunction between an ability to acquire information and to capture its

benefits. This disconnection is likely to have a fundamental impact on selection for social information

use, such that even in social information-rich environments, only a small number of individuals of a

particular phenotype may be selected to use it.
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