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ABSTRACT Many studies use representations of
human body outlines to study how individual character-
istics, such as height and body mass, affect perception of
body shape. These typically involve reality-based stimuli
(e.g., pictures) or manipulated stimuli (e.g., drawings).
These two classes of stimuli have important drawbacks
that limit result interpretations. Realistic stimuli vary in
terms of traits that are correlated, which makes it
impossible to assess the effect of a single trait independ-
ently. In addition, manipulated stimuli usually do not
represent realistic morphologies. We describe and exam-
ine a method based on elliptic Fourier descriptors to

automatically predict and represent body outlines for a
given set of predicted variables (e.g., sex, height, and
body mass). We first estimate whether these predictive
variables are significantly related to human outlines. We
find that height and body mass significantly influence
body shape. Unlike height, the effect of body mass on
shape differs between sexes. Then, we show that we can
easily build a regression model that creates hypothetical
outlines for an arbitrary set of covariates. These statisti-
cally computed outlines are quite realistic and may be
used as stimuli in future studies. Am J Phys Anthropol
142:22–29, 2010. VVC 2009 Wiley-Liss, Inc.

Stature and body mass are the two most important
determinants of human body shape (Azouz et al.,
2005). Beyond the proximate descriptive interest in
assessing the effects of these two characteristics on
body outlines, studying these variations is crucial to
understand various behaviors, such as mate choice or
eating disorders, that are based on body shape percep-
tion (e.g., Tovée et al., 1998; Pawlowski, 2003; Farrell
et al., 2005).
Empirical studies of the influence of height and/or

mass on body shape perception often consist of asking
people to evaluate or manipulate representations of body
shapes. Such studies traditionally use two main classes
of stimuli: reality-based stimuli (such as photographs,
video, or 3D body scans) and manipulated stimuli (such
as drawings or transformed pictures). Reality-based
stimuli have two main limitations: they are difficult to
collect in large numbers, and they exhibit many traits
that are correlated. Assessing the influence of one of
these traits while keeping all others constant is thus
impossible. Manipulated stimuli are more useful for
studying the independent influences of different factors
because a researcher may constrain some morphological
dimensions while varying others. Unfortunately, creating
realistic stimuli (e.g., using drawings) is difficult because
manually constraining certain morphological dimensions
requires comprehensive anatomical knowledge. For
instance, Singh (1993) designed drawn stimuli such that
the waist-to-hip ratio varies independently from the
body mass index (BMI); however, the variation in perim-
eter area ratio (PAR) among these figures indicates that
their BMI values do vary (Tovée and Cornelissen, 1999).
To summarize, both reality-based and manipulated

stimuli have drawbacks, which limit the biological signif-
icance of studies that use them.
In this work, we present and evaluate a method to vis-

ualize the independent influence of height and body
mass (expressed as BMI) on body shape as represented
by the body outline, while respecting the natural rela-
tionships between these variables and other traits as
much as possible. Among morphometric methods dedi-
cated to outline analyses, elliptic Fourier analysis (Kuhl
and Giardina, 1982) and sliding-semi landmarks Pro-
crustes methods (Bookstein, 1996; Green, 1996; Sampson
et al., 1996) are most commonly used now. Here, we
choose a method that relies on elliptic Fourier analysis
because it allows to considerably reduce the number of
shape parameters in adjusting a function series to a
given outline. Two steps are involved: 1) the quantitative
description of outlines extracted from a picture database
based on this Fourier analysis and 2) the statistical
prediction of the geometry of hypothetical body outlines,
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to visualize how height and BMI may influence body shape.
We will describe these two steps in two separate sections.

I. DESCRIBING BODY SHAPE USING ELLIPTIC
FOURIER DESCRIPTORS

Fourier analysis is the decomposition of a mathemati-
cal function (or signal) into a sum of periodic functions.
This technique has many applications in physics and
mathematics, but it can also be used in various biological
fields. Here, we use an elliptic Fourier shape analysis,
developed to describe the shape of a two-dimensional
closed curve in the Cartesian coordinate system (Kuhl
and Giardina, 1982). More precisely, we can characterize
the x and y coordinates as a function of the curvilinear
abscissa t (the net distance on the outline from the start-
ing point), and these functions can be decomposed
according to the following Fourier series expansions:

xðtÞ ¼ a0 þ
XN
n¼1

an cos
2pnt
T

þ bn sin
2pnt
T

� �

yðtÞ ¼ c0 þ
XN
n¼1

cn cos
2pnt
T

þ dn sin
2pnt
T

� �

For any particular harmonic, these equations define
an ellipse in the xy-plane. The parameters a0 and b0
define the coordinates of the centroid of the outline, and
T corresponds to the outline perimeter. For each har-
monic rank (n), four parameters of Fourier coefficients
parameterize the corresponding ellipse: an, bn, cn, and
dn. These parameters are called the elliptic Fourier
descriptors (EFDs; see Kuhl and Giardina, 1982 for
details). The method consists of the decomposition of a
closed curve into a sum of harmonically-related ellipses
of increasing order. These ellipses become progressively
smaller as they describe the outline in greater detail,
with the maximal harmonic rank used (N) defining the
degree of precision of the outline approximation. The
position of any point on an outline can be approximated
by the net displacement of a point traveling around the
series of superimposed and successively smaller ellipses.
The elliptic Fourier shape analysis does not require

points defining the outline to be equally spaced, and
these points do not need to be homologous between indi-
viduals. Furthermore, this method can be applied to
very complex curves, in contrast with other morphomet-
ric methods that describe outlines using Fourier analysis
(e.g., Fourier analysis based on the variation of radii).
Moreover, if the resulting EFDs are normalized, then
the parameters of Fourier coefficients will be invariant
to size, rotation, and starting position. The Fourier pa-
rameters (i.e., the harmonic coefficients) can thus be
used as shape descriptors. All these advantages explain
why researchers often prefer the EFD approach over
other ways to analyze complex and closed outlines (Rohlf
and Archie, 1984; Crampton, 1995).
An early application of EFDs in biology was the quan-

tification of morphological distances between individuals
in the context of a taxonomic perspective (e.g., Rohlf and

Archie, 1984; Jensen et al., 2002; Grey et al., 2008).
Indeed, a quantitative intra- versus interspecific assess-
ment of shape variation can help discriminate between
closely related taxa. EFDs have also been used to study
whether outline geometry may be related to some other
factor. Such studies have investigated the influence of
fruit outline on wind dispersion (Goto et al., 2005) or the
influence of flower outline on attracting pollinators
(Yoshioka et al., 2007). EFDs also help clarify the rela-
tive influence of environment and genetics on shape var-
iation (e.g., Yoshioka et al., 2004). Anthropologists have
used EFDs to describe shape variation (e.g., Friess and
Baylac, 2003; Christensen, 2004). They also used EFDs
to study the patterns of differentiation between primate
sexes and taxa (e.g., Lestrel et al., 1993, 2005;
Schmittbuhl et al., 2007) and to assess whether some
characteristics can be used to discriminate between taxa
derived from bone remains (e.g., Bailey and Lynch, 2005;
Schmittbuhl et al., 2007). Here, we present the first
attempt to apply EFDs to assess the interindividual
variability of human body outlines.

MATERIALS AND METHODS

Outline material

We used royalty-free licensed pictures of subjects
downloaded from an online database as the raw material
to study body shape (‘‘Character photo references for 3D
artists and game developers’’, 2008. SmartNet IBC LTD,
Belize City, Belize. URL http://www.3d.sk). We only
selected frontal-view pictures of individuals without sig-
nificant injuries, standing upright and entirely nude;
individuals with dwarfism were excluded. An additional
selection criterion was the availability of personal data—
namely, height and body mass—for these individuals.
About 51 men and 75 women satisfied the criteria for
inclusion at the time of our study (February 2008). We
delimited outlines from the original pictures with a vir-
tual paintbrush in the GIMP 2.4 image processing pro-
gram (Kimball et al., 2008). We removed hands, male
genitalia, and hair from outlines, to suppress variation
that was outside the scope of the present study. All pic-
tures were then transformed into the portable anymap
file format (*.pnm) using the ImageMagick 6.3.7 soft-
ware (1999–2008; http://www.imagemagick.org). Pictures
were then loaded and binarized using the R 2.8 statisti-
cal software (R Development Core Team, 2008) using
functions from the pixmap package (see Claude, 2008 for
implementation details). We also performed all subse-
quent analyses in R; hereafter we use italics to indicate
all R functions. All software used is open-source and
freely available on the Web. The scripts used in this
study are all available upon request.

Digitization

We digitized outlines with the Conte() function
designed by Claude (2008). Starting from an arbitrary
point, this function computes the x and y coordinates for
each pixel of the outline. It always computes coordinates
counter-clockwise. In this study, we determined outlines
directly from pixel coordinates. The length of the digi-
tized outlines ranged from 1,971 to 4,377 pixels (mean 6
SD 5 3,245 6 730). Smoothing the outline or using an
equal subsample of pseudo-landmarks for all outlines, as
suggested by Haines and Crampton (2000), failed to pro-
duce substantial differences (details not shown).

23HEIGHT, BMI, AND THE SHAPE OF THE HUMAN BODY

American Journal of Physical Anthropology



EFD computation

Since different individuals were photographed under
different conditions (variable distance between each indi-
vidual and the camera, variable orientation of the cam-
era), we favored the normalized version of EFD (here-
after called NEFD). Indeed, the coefficients of any
Fourier series can only be influenced by body outlines,
and/or not by the effects of scaling, rotation, translation,
and choice of starting point. This condition is necessary
because our procedures involve the computation of sta-
tistics based on EFDs that are simultaneously obtained
from different individuals. There are several ways to
normalize EFDs; we chose to normalize them with the
traditional approach described in Kuhl and Gardiana,
1982 (setting the starting point on the major axis of the
first ellipse, and using the length of its semi-major axis
as a size standard), because human size is often meas-
ured as stature, which is best approximated using the
major axis of the first ellipse. We computed the NEFDs
with the NEF() function (Claude, 2008). This function
calls another function (efourier()) that computes the
parameters a0, b0, an, bn, cn, and dn of the equations pre-
sented above. Then, we normalized the parameters of
the Fourier coefficients using this equation:

An Bn

Cn Dn

� �

¼ cosðwÞ sinðwÞ
�sinðwÞ cosðwÞ

� �
an bn

cn dn

� �
cosðnhÞ � sinðnhÞ
sinðnhÞ cosðnhÞ

� �

where An, Bn, Cn, and Dn correspond to the NEFD for
the nth harmonic. Normalization involves w, the rotation
angle of the first ellipse, and h, the rotation angle of the
starting point from the intersection of the ellipse with its
major axis (for details, see Kuhl and Giardina, 1982;
Ferson et al., 1985). The three coefficients associated
with the first harmonic are constrained accordingly:
A1 5 1, B1 5 0 and C1 5 0. The remaining D1 is associ-
ated with the harmonic eccentricity and represents,
roughly, the net width-to-length ratio of the object.
D1 should therefore highly correlate with the BMI infor-
mation in the outline.

Influence of the number of harmonics considered

The maximum number of harmonics (N) that can be
computed for any outline is constrained by the Nyquist
theorem. This corresponds to half the total number of
outline coordinates, hereafter called Nmax (Crampton,
1995). If Nmax harmonics are considered, the approxi-
mated outline passes exactly through all points defining
the original outline. If N \ Nmax, then the approxima-
tion loses some of the shape information. However, the
amount of shape information described by each partial
sum decreases with the harmonic order, and much of the
shape information can be summarized by a finite num-
ber of Fourier coefficients. It is therefore important to
explore the relationship between an increasing cumula-
tive set of harmonics and the appearance of the recon-
structed outlines obtained by using the inverse Fourier
transform.
To limit the harmonic set according to shape informa-

tion, we can analyze the Fourier power spectrum that is
obtained by comparing the harmonic rank n with the
harmonic power:

Powern ¼ A2
n þ B2

n þ C2
n þD2

n

2

Hence, for any outline, we can estimate the harmonic
rank necessary to reach a given proportion of the total
power:

Relative powerN ¼
PN

n¼1 A2
n þ B2

n þ C2
n þD2

n

� �
PNmax

n¼1 A2
n þ B2

n þ C2
n þD2

n

� �

Hence, for all individuals, we computed harmonic
ranks corresponding to reconstructed outlines that reach
90, 99, 99.9, 99.99, 99.999, and 99.9999% of the total
power. Note that, because of normalization, A1, B1, and
C1 need not be incorporated into the power analysis.
Then, we approximated the original outline of a random
individual using the average number of harmonics
obtained from the relative power analysis. Finally, we
reconstructed the six corresponding approximated out-
lines using the iefourier() function, which performs
reverse Fourier transforms (Claude, 2008), and we plot-
ted the results using the plot() function (see Fig. 1). Note
that the number of harmonics used in this analysis is
895; this number is constrained by the shortest length of
digitized outlines. As a consequence, for all reconstruc-
tions in this study, outlines are traced from 1970 pixel
coordinates: that is, we used twice the number of har-
monics.

Shape analysis

To assess the influence of height, mass, and sex on
body shape, we performed a multivariate regression

Fig. 1. The influence of the number of harmonics of normal-
ized elliptic Fourier descriptors on the computed outline of a
randomly chosen woman from the database. These harmonic
numbers correspond to average powers that reach 90, 99, 99.9,
99.99, 99.999, and 99.9999% of the average total power.
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analysis using the lm() function. We summarized the
Fourier coefficient set using a principal component
analysis on their variance–covariance. We performed the
PCA with the prcomp() function, and we selected the
first five components to explain more than 90% of
the overall interindividual variation. We used these prin-
cipal components as the dependent variables of the
regression. Covariates considered in the model are the
sex, the height, and the BMI. We also considered the
between-arm angle and the between-leg angle to account
for posture variations between subjects. Because normal-
izing EFDs constrains the length of the major axis of the
first ellipse, the influence of the height covariates in this
analysis cannot account for size differences; instead, the
height covariate can only account for morphological dif-
ferences in the shape per se. We considered the sex cova-
riate both as a single effect and as an interaction with
the other covariates (see Table 1). We measured angles
using imageJ 1.37 (Abramoff et al., 2004) software.
To assess the influence of covariates, we performed a
test based on the Pillai-Bartlett statistic using the
anova.mlm() function in R.

RESULTS

Cumulative power accounting for 90, 99, 99.9, 99.99,
99.999, and 99.9999% of the total power is reached for 4,
7, 19, 36, 79, and 316 harmonics on average, respec-
tively. Hence, a small number of harmonics can capture
most of the variance in shape information between indi-
viduals. Even though only seven harmonics create an
approximated outline that captures 99% of the variance,
a simple visual inspection shows that stimuli obtained
are not satisfactory to be used in shape perception stud-
ies relying on visual assessment (see Fig. 1): the corre-
sponding reconstructed outline seems closer to an elon-
gated starfish than to a human outline (for illustration,
see Patrick Star in Hillenburg, 1999).
Table 1 summarizes results pertaining to the influence

of individual characteristics on body shape. All single
effects except for between-leg angle appear to signifi-
cantly influence outline geometry. The high F-values
obtained for between-arm angle show that there is sub-
stantial variation correlated with arm position between
individuals in our dataset. We found a weakly significant
effect for height (Table 1). This cannot correspond to a
difference in stature, as we analyzed normalized EFDs
(see ‘‘Methods’’), but indicates that some other aspects of
body shape correlate with size. Height is significantly
correlated with outline geometry, but this relationship is

independent of sex (Table 1). By contrast, BMI is related
to body shape and interacts with sex, meaning that
females and males had different relationships between
BMI and body shape. The influence of sex on shape is
therefore complex, because both direct and indirect
effects (interactions with BMI but also with position
angles) are present. For this reason, we will study the
outlines of men and women in different models in the
next section.

II. VISUALIZATION OF HEIGHT AND BMI
EFFECTS ON BODY SHAPE

As noted by Crampton (1995), one of the most interest-
ing properties of Fourier methods like NEFD is that it is
possible to invert the Fourier transform and reconstruct
an outline from a set of Fourier coefficients. He notes,
‘‘This property allows one to average Fourier coefficients
from a large number of outlines and generate an ‘average
shape’ for a given population of fossils’’ (Crampton,
1995). Monti et al. (2001) showed that this property can
be extended to visualize the influence of any variable of
interest on the shape. Indeed, once we obtain the quanti-
tative description of outline shapes from NEFDs (cf. the
first section), we could also model the relationship
between individual characteristics and their outline ge-
ometry as quantified by NEFDs. We can also model the
shape of an individual with characteristics that are not
explicit in the dataset. This is possible because a regres-
sion model is simply a set of functions that relate the ex-
planatory variables (in our case the between-arm angle,
the between-leg angle, the height, and the BMI of the
subjects) to a dependent variable (the NEFDs as esti-
mated in the previous section). The model can therefore
predict the NEFDs for any arbitrary set of explanatory
variable values, provided that these values are within
the range of the values that are actually present in the
dataset. The predicted NEFDs can then be used to draw
the contour of a hypothetical person with the chosen val-
ues of explanatory variables.
In the following section, we will use a single set of

functions to describe the relationship between the
NEFDs and our explanatory variables. It is not possible
to find such a set that exactly predicts the observed
NEFDs for all the individuals in our dataset. This might
be because the shape of each individual is influenced by
characteristics that we have not considered in our model.
This might also be because our regression model only
approximates the actual relationship between explana-
tory variables and NEFDs. For all these reasons, the

TABLE 1. Pillai’s trace statistics from a multivariate regression analysis performed on the first five principal components of the
PCA on Fourier coefficients (see text for details)

Covariate Pillai value df Approximated F Hypothesis df Error df P

Between arm angle 0.91 1 237 5 112 \0.001
Between leg angle 0.055 1 1.3 5 112 0.27
Sex 0.24 1 7.1 5 112 \0.001
Height 0.10 1 2.5 5 112 0.032
BMI 0.75 1 68 5 112 \0.001
Sex : between arm angle 0.11 1 2.7 5 112 0.022
Sex : between leg angle 0.34 1 12 5 112 \0.001
Sex : height 0.034 1 0.80 5 112 0.55
Sex : BMI 0.15 1 4.1 5 112 \0.002
Residuals – 116 – – – –

These five components represent more than 90% of the total coefficient variability. Interactions between covariates are labeled with
colons.
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only result that we can actually produce is the set of
functions that best predict the NEFDs for the individu-
als in our dataset. This prediction is the one that best
fits the constraints that relate the various aspects of
body shape. We will use this method to study the effect
of height and BMI on body shape, while also investigat-
ing the accuracy of the predictive tool.

MATERIALS AND METHODS

Statistical modeling

In the first part of this study, we showed that an indi-
vidual’s sex has a complex influence on body shape;
hence, we created two different multivariate linear
models (one for each sex) to predict the influence of indi-
vidual characteristics on outline geometry. As in the pre-
vious section, we fitted models using the lm() function,
but, since it was not necessary to limit the analysis to
the first terms in the Fourier series, the NEFD were
directly used as the dependent variables. Again, we
choose the maximal number of harmonics to match the
smallest Nyquist frequency defined by the shortest out-
line length (N 5 985). Covariates of the models include
the height, the BMI, the between-arm angle and the
between-leg angle. The goal is to estimate, from the
regression, the location parameters of normalized
Fourier coefficients on covariates, but not to estimate the
standard error as a means of testing the significance of
their effects. Therefore, each multivariate model is
equivalent to the set of all single regressions of each
NEFD on covariates (Gnanadesikan, 1977). Thus, each
single regression can be expressed as:

Yi ¼ aþ RjfbjXijg þ ei

where Yi is one of the NEFDs for the individual i, and a
is the average value of this NEFD across all individuals.
bj refers to location parameters for the j different covari-
ates Xij (describing the relationship between explanatory
variables and Yi), and ei is the residual (corresponding to
the difference between predicted and actual NEFD
values, assumed to be a Gaussian random variable
with zero mean and a constant variance across all
individuals).

Outline predictions

Having estimated the regression parameters for all
regression models, we can predict the NEFDs given
any values for the previous covariates. We used the
predict.lm() function to predict the NEFDs given
height, BMI and angle values. We used predicted
Fourier coefficients to reconstruct outlines by reverse
Fourier series transforms using the iefourier() function
(Claude, 2008). Before plotting, we rescaled all outlines
to obtain appropriate statures, since reconstructed out-
lines are initially all the same size because of the nor-
malization that constrains the length of the semi-major
axis of the first ellipse. To rescale outlines, we normal-
ized the x and y coordinates of each outline pixel and
multiplied by the height value used for predictions.
Figure 2 shows several examples of outline predictions,
for each sex, corresponding to different BMIs. The BMI
values represented (17, 23, and 30 kg m22) correspond
respectively to underweight, normal, and overweight
individuals according to cut-off values given by the

World Health Organization (http://www.who.int/bmi/
index.jsp?introPage5intro3.html).

Evaluation of the method

To quantitatively evaluate the performance of the
method used to generate predictions, we compared the
original outlines to the corresponding predicted outlines
for each individual in our database; we calculated the
corresponding predicted outline by predicting the outline
of an average individual with the same sex, height, BMI,
between-leg angles, and between-arm angles as the origi-
nal individual. We compared the original and predicted
outlines using two different measures. One measure is
the area of the intersection between each original outline
and each corresponding predicted outline. The intersec-
tion area directly provides information about the quality
of predictions, since any departure of the predicted out-
lines from the original ones will create a non-null inter-
section area; this area becomes increasingly large as the
discrepancy between outlines increases. We used a sec-
ond measure, which is believed to influence perception,
to assess prediction quality: the PAR (perimeter area ra-
tio, see Tovée et al., 1999). This measure seems to influ-
ence behavior based on the perception of body shape; in
addition, the high correlation between PAR and BMI in
the context of upright frontal views suggests that the
PAR may provide a reliable visual proxy for BMI (Tovée
et al., 1999). Thus, comparing the PAR of the original
outlines with the PAR of the predicted outlines allows
for a quantitative estimation of how perception of BMI
will differ between the original and predicted outlines. If
the PAR is also correlated with height, then comparing
PAR values may also estimate how the perception of
height would differ between the original and predicted

Fig. 2. Predictions for men (top) and women (bottom) with
different body mass. The male outlines are for individuals
who are 180 cm tall, while the female data are for a height of
170 cm.
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outlines. We computed correlations between PAR and
height, and between PAR and BMI, by using the
cor.test() function. We used Spearman nonparametric cor-
relation tests, which do not assume a linear relationship
between correlated variables. Once we determined PAR
measures, we assessed the overall difference between
PAR values measured on the original outlines and PAR
values measured on the predicted outlines in each sex
using a paired test of Wilcoxon using the wilcox.test()
function. Then, to analyze whether or not the quality of
predictions varies with height and BMI values, we corre-
lated absolute differences between the PARs of predicted
outlines and the PARs of the original outlines to height
and BMI using Spearman correlation tests.

RESULTS

The area of the intersection between silhouettes delim-
ited by the original outlines and the corresponding sil-
houettes delimited by the predicted outlines ranges
39.7–117 cm2 for men and 30.0–182 cm2 for women. It
represents between 0.7 and 2.1% (for men), or between
0.7 and 3.9% (for women), of the whole area measured
on the original silhouettes.
The PAR correlates significantly with both height and

BMI in our dataset (for the PAR-height correlation in
men q 5 20.36; for the PAR-height correlation in
women q 5 20.39; for the PAR-BMI correlation in men
q 5 20.77; and for the PAR-BMI correlation in women
q 5 20.78; with P \ 0.001 for all correlations). Figure 3
shows the relationship between PAR measures and BMI.
This figure has a clear outlier, corresponding to
‘‘Roman,’’ a man who is 149 cm tall with a mass of 69
kg, according to the database. Such characteristics imply
a BMI of 31 kg m22, yet this person does not appear to
be particularly overweight, or muscular, in the picture.
Thus, either height, mass, or both, may have been

misreported in the database (we suspect that reported
height is incorrect). Removing this individual has only a
negligible influence on the predicted outlines for other
individuals. For instance, including or excluding this
outlier in the regression model leads to PAR measures
on predicted outlines that are similar (Wilcoxon paired
test: V 5 758, P 5 0.25) and highly correlated
(Spearman correlation test: q 5 0.96, P \ 0.001). This
suggests that the statistical approach used to predict the
influence of individual characteristics on body shape is,
to some extent, robust to the presence of a few outliers
in the dataset.
Overall, the average PAR measured for predicted out-

lines is significantly lower than the average PAR meas-
ured using the original outlines in both sexes (for men:
mean PAR for predicted outlines 5 0.135 6 0.009 cm21;
mean PAR for the original outlines 5 0.143 6 0.012
cm21; Wilcoxon paired test: V 5 1,269, P \ 0.001; for
women: mean PAR for predicted outlines 5 0.144 6
0.016 cm21; mean PAR for the original outlines 5
0.153 6 0.017 cm21; Wilcoxon paired test: V 5 2,758,
P \ 0.001). We detected no particular monotonic trend
in the relationship between absolute PAR differences
and height or BMI in both sexes (for the absolute PAR
difference-height correlation in men q 5 20.27, P 5
0.06; for the absolute PAR difference-height correlation
in women q 5 20.09, P 5 0.45; for the absolute PAR dif-
ference-BMI correlation in men q 5 20.24, P 5 0.09; for
the absolute PAR difference-BMI correlation in women
q 5 20.15, P 5 0.19; NB: for the data on men, we
removed the outlier). Hence, predicted outlines appear
slightly biased toward the PAR and we found no effect of
height or BMI on this bias.

III. GENERAL DISCUSSION

Our goal was to assess and visualize the influence of
height and BMI on body outline. We applied and evalu-
ate the elliptic Fourier analysis in this respect. Our
assessment of body shape variation shows that height
influences shape. In other words, even if we rescale to
the same size body outlines of different individuals
whose statures differ, then outline geometries will con-
tinue to differ. This effect is relatively weak, but it may
still influence the results from previous studies that do
not consider this phenomenon; for instance, attractive-
ness studies that focus on the height effect usually
obtain different stimuli from isometric scaling from a
single drawing (e.g., Pawlowski, 2003). Thus, these stim-
uli do not reflect realistic body proportions between
height and other morphological traits. Moreover, results
show that the influence of BMI on shape is strong and
differs between the sexes. This result is consistent with
the fact that fat distribution differs between males and
females (e.g., Malina, 2005).
Exploring shape variation using Fourier analysis

shows that posture differences between individuals
strongly influence outlines. Thus, controlling posture rig-
orously in a picture dataset may improve both the
assessment and the visualization of factors that impact
body shape. In addition, our results show that although
the shape information captured by NEFDs increases
strongly with the number of harmonics, a large number
of harmonics (at least 50) seem to be necessary to repre-
sent human body outlines as pertains to visual assess-
ment. This suggests that humans can visually detect
subtle differences in shape, and this result underscores

Fig. 3. Perimeter area ratio (PAR) as a function of body
mass index (BMI). The PAR has been measured using the origi-
nal digitized outlines (grey symbols) and using the correspond-
ing predicted outlines (empty symbols). For each individual, the
corresponding predicted outline has been obtained by predicting
the outline of an average individual who exhibits the same char-
acteristics as the original individual (see text for details). The
symbols labeled with asterisks indicate an outlier (Roman),
whose personal characteristics may have been misreported.
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the need for stimuli for which the shape is as realistic as
possible in studying the influence of shape variation on
perception.
To independently visualize the influence of height and

BMI on body shape, we combined elliptic Fourier analy-
sis with regression modeling and inverse Fourier trans-
forms to predict outlines corresponding to any set of
individual characteristics (sex, height, and BMI). This
approach, already used by Monti et al. (2001) to study
the form of genitalia of noctuid moths, seems to be effec-
tive in evaluating human body shape. Indeed, analyzing
predicted outlines demonstrates that the outlines gener-
ated here are quite realistic. However, the perimeter–
area ratio PAR used as a measure to estimate the
quality of predicted outlines appear lower in the case of
predicted outlines than for real outlines (see Fig. 3). This
may occur because, in the case of predicted outlines,
shape variations, which are not related to the character-
istics considered in our model, are averaged. Therefore,
predicted outlines appear to be smoothed; this reduces
local deformations, thereby decreasing the perimeter.
Thus, rather than seeing this difference as a bias in the
method, we conclude that predicting outlines reduces the
amount of noise in shape variability. Our analysis sug-
gests that the bias is independent of both height and
body mass. Therefore, these characteristics should not
affect the potential influence of bias on perception. None-
theless, only experimental studies will yield further
insights.
In conclusion, from a relatively small sample of photo-

graphs (51 men and 75 women), we can predict body
shape reliably. Our protocol lets the effects of different
traits (such as height and mass) on body shape to be
objectively disambiguated. As such, the protocol could be
useful in studies that use stimuli to distinguish height
and mass effects in the context of the relationship
between BMI and attractiveness, to cite one example.
Moreover, the independent effect of one or several ex-
planatory variables on outline variation can be estimated
and visualized, removing interindividual variations due
to other (independent) factors. This prevents potential
biases from confounding traits that occur when photo-
graphs are used directly. Contrary to hand-made draw-
ings, our outline construction process is much less sub-
jective. No drawing skills and no knowledge of human
body proportions are required because the process is
automatic (after the images have been suitably pre-
pared). Our method combines the advantages of using
reality-based stimuli (realism) with the benefits of using
manipulated stimuli (the possibility of constraining vari-
ation), while avoiding several limitations associated with
each approach. We used height and mass, though it is
possible to include other traits in the model. For
instance, medical researchers may be interested in visu-
alizing the influence of other individual characteristics
such as diet, health, or age, on body shape. However, as
in all regression models, the greater the number of traits
included, the more initial outlines are needed to obtain
predictions of acceptable quality. Finally, we reiterate
that this method can be extended to any other organisms
or objects.
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