
How do foragers decide when to leave a patch? A test

of alternative models under natural and experimental

conditions

Harry H. Marshall1,2*, Alecia J. Carter1,3†, Alexandra Ashford1,2, J. Marcus Rowcliffe1 and

Guy Cowlishaw1

1Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK; 2Division of Ecology and

Evolution, Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK; and
3The Fenner School of Environment and Society, The Australian National University, Acton, Canberra, ACT, 0200,

Australia

Summary

1. A forager’s optimal patch-departure time can be predicted by the prescient marginal value

theorem (pMVT), which assumes they have perfect knowledge of the environment, or by

approaches such as Bayesian updating and learning rules, which avoid this assumption by

allowing foragers to use recent experiences to inform their decisions.

2. In understanding and predicting broader scale ecological patterns, individual-level mecha-

nisms, such as patch-departure decisions, need to be fully elucidated. Unfortunately, there are

few empirical studies that compare the performance of patch-departure models that assume

perfect knowledge with those that do not, resulting in a limited understanding of how forag-

ers decide when to leave a patch.

3. We tested the patch-departure rules predicted by fixed rule, pMVT, Bayesian updating and

learning models against one another, using patch residency times (PRTs) recorded from 54

chacma baboons (Papio ursinus) across two groups in natural (n = 6175 patch visits) and

field experimental (n = 8569) conditions.

4. We found greater support in the experiment for the model based on Bayesian updating

rules, but greater support for the model based on the pMVT in natural foraging conditions.

This suggests that foragers may place more importance on recent experiences in predictable

environments, like our experiment, where these experiences provide more reliable information

about future opportunities.

5. Furthermore, the effect of a single recent foraging experience on PRTs was uniformly

weak across both conditions. This suggests that foragers’ perception of their environment

may incorporate many previous experiences, thus approximating the perfect knowledge

assumed by the pMVT. Foragers may, therefore, optimize their patch-departure decisions in

line with the pMVT through the adoption of rules similar to those predicted by Bayesian

updating.

Key-words: Bayesian updating, habitat predictability, learning, marginal value theorem,

patch-departure-rules, primate

Introduction

There is a growing appreciation of the need to understand

the individual-level mechanisms that drive broader scale

ecological and evolutionary patterns (Evans 2012). Two

such mechanisms that are being increasingly recognized as

important are individuals’ foraging behaviour and infor-

mation use (Giraldeau & Caraco 2000; Danchin et al.

2004; Dall et al. 2005; Stephens, Brown & Ydenberg

2007). Decisions made by foragers, and particularly the

rules governing patch-departure decisions, involve both

these mechanisms and are central to optimal foraging

*Correspondence author. E-mail: harry.marshall04@ic.ac.uk

†Present address: Large Animal Research Group, Department of

Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society

Journal of Animal Ecology 2013 doi: 10.1111/1365-2656.12089



theory (Giraldeau & Caraco 2000; Stephens, Brown &

Ydenberg 2007; Fawcett, Hamblin & Giraldeau 2013).

Early work on this topic tended to search for the depar-

ture rule that would result in a forager leaving a patch at

the optimal time (Stephens & Krebs 1986), but did not

tackle the question of how a forager would judge when it

had reached this optimal departure point, often implicitly

assuming the forager had perfect knowledge of its envi-

ronment (as highlighted by Green 1984; Iwasa, Higashi &

Yamamura 1981; van Gils et al. 2003; Olsson & Brown

2006). Two well-recognized examples of this work include

the use of simple fixed rules and the original, and pre-

scient, version of the marginal value theorem (pMVT,

Charnov 1976). Fixed rule foragers, as the name suggests,

leave patches at a fixed point, such as after a fixed

amount of time since entering the patch has elapsed

(e.g. Nolet, Klaassen & Mooij 2006; Olsson & Brown

2006). The pMVT predicts that foragers should leave a

patch when the return they receive (the instantaneous

intake rate) is reduced by patch depletion so that it is

more profitable to accept the travel costs of leaving the

patch in search of a new one. This threshold intake rate is

known as the ‘marginal value’ and is set by the habitat’s

long-term average intake rate, which is a function of the

average patch quality and density. The pMVT assumes

foragers have perfect knowledge (i.e. are prescient) of the

habitat’s patch quality and density and so can judge when

their intake rate has reached the marginal value, resulting

in patch residency times (PRTs) being shorter in habitats

where patches are closer together and better quality. In

addition to perfect knowledge, the pMVT also assumes

that foragers gain energy in a continuous flow, rather

than as discrete units, and that there is no short-term var-

iation in the marginal value (reviewed in Nonacs 2001).

Consequently, it has been criticized as unrealistic (Nonacs

2001; van Gils et al. 2003; McNamara, Green & Olsson

2006), despite receiving some qualitative empirical support

for its predictions (Nonacs 2001).

Further work on patch-departure decisions has

addressed the fact that foragers are likely to have imper-

fect knowledge of their environment and so will need to

use their past foraging experiences to estimate the optimal

patch-departure time. Two such approaches that have

received particular attention are Bayesian updating (Oaten

1977; Green 1984) and learning rule models (Kacelnik &

Krebs 1985). In the case of Bayesian updating, these mod-

els were developed in direct response to the above criti-

cisms of the pMVT (e.g. Green 1984; reviewed in

McNamara, Green & Olsson 2006). In these models, indi-

viduals make foraging decisions as an iterative process,

using their foraging experiences to update their perception

of the available food distribution (their ‘prior’ knowl-

edge), making decisions on the basis of this updated per-

ception (their ‘posterior’ knowledge), and then using the

outcome of this decision to further update their percep-

tion, and so on. Learning rule models (Kacelnik & Krebs

1985) appear to have developed separately to Bayesian

models, but similarly describe foragers using information

from past experiences in their current foraging decisions.

They differ from Bayesian models, however, in that they

describe past experiences accumulating in a moving aver-

age representing a perceived valuation of the environment

(Kacelnik & Krebs 1985), rather than a perceived distri-

bution of the relative occurrence of different patch quali-

ties as in Bayesian models (Dall et al. 2005; McNamara,

Green & Olsson 2006). A learning rule forager then

makes a decision about whether to leave a patch or not

by combining its moving average valuation of the envi-

ronment up to the last time step with information gath-

ered in the current time step (e.g. Beauchamp 2000; Groß

et al. 2008; Hamblin & Giraldeau 2009).

Compared to this considerable amount of theoretical

work, empirical tests of these models’ predictions are rela-

tively limited and have mainly focussed on the pMVT

(reviewed in Nonacs 2001; but see Valone 2006). In those

few cases where models of perfectly informed foragers

have been empirically compared against either Bayesian

or learning models (i.e. models of foragers with imperfect

information), perfect information models provided a rela-

tively poor explanation of the foraging behaviour

observed (Alonso et al. 1995; van Gils et al. 2003; Amano

et al. 2006; but see Nolet, Klaassen & Mooij 2006). For

example, Bayesian updating models explained foraging

behaviour better than other models, including a prescient

forager model, in red knots (Calidris canutus) (van Gils

et al. 2003). We know of no empirical study, however,

that has compared the performance of Bayesian, learning

and perfect information models, such as the pMVT, in

the same analysis. Furthermore, there is evidence that a

forager’s use of past experiences in its patch-departure

decisions, within either the Bayesian or learning frame-

work, can be dependent on the characteristics of the for-

aging habitat (Lima 1984; Valone 1991, 1992; Devenport

& Devenport 1994; Biernaskie, Walker & Gegear 2009).

However, most studies to date have only compared forag-

ing behaviour between captive environments or differing

configurations of artificial food patches (but see Alonso

et al. 1995). Therefore, to fully understand how a forager

uses previous experiences in its decision-making, a simul-

taneous comparison of perfect information, Bayesian

updating and learning rule models, ideally involving both

natural and experimental conditions (in which the charac-

teristics of the foraging habitat can be manipulated),

would be extremely valuable.

The purpose of this study is, therefore, to empirically

test whether patch-departure models that assume foragers’

knowledge of their environment are imperfect, such as the

Bayesian updating and learning rule approaches, provide

a better description of patch-departure decisions than

those that assume perfect knowledge. To do this, we con-

sider which aspects of an individual’s environment and its

foraging experiences these different models predict will

play a role in patch-departure decisions and assess the

explanatory power of these different factors in the PRTs
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of wild chacma baboons (Papio ursinus, Kerr 1792) in

both their natural foraging habitat and in a large-scale

field experiment.

Materials and methods

study site

Fieldwork was carried out at Tsaobis Leopard Park, Namibia

(22°23′ S, 15°45′ E), from May to September 2010. The environ-

ment at Tsaobis predominantly consists of two habitats: open des-

ert and riparian woodland. The open desert, hereafter ‘desert’, is

characterized by alluvial plains and steep-sided hills. Desert food

patches mainly comprise small herbs and dwarf shrubs such as

Monechma cleomoides, Sesamum capense and Commiphora virgata.

The riparian woodland, hereafter ‘woodland’, is associated with

the ephemeral Swakop River that bisects the site. Woodland food

patches are large trees and bushes such as Faidherbia albida, Pros-

opis glandulosa and Salvadora persica (see Cowlishaw & Davies

1997 for more detail). At Tsaobis, two troops of chacma baboons

(total troop sizes = 41 and 33 in May 2010), hereafter the ‘large’

and ‘small’ troop, have been habituated to the presence of human

observers at close proximity. The baboons at Tsaobis experience

relatively low predation risk as their main predator, the leopard

(Panthera pardus, Linnaeus 1758), occurs at low densities, whilst

two other potential predators, lions (P. leo, Linnaeus 1758) and

spotted hyenas (Crocuta crocuta, Erxleben 1777), are entirely

absent (Cowlishaw 1994). We collected data from all adults and

those juveniles over 2 years old (n = 32 and 22), all of whom were

individually recognizable (see Huchard et al. 2010 for details).

Individuals younger than two were not individually recognizable

and so were not included in this study.

data collection

Natural foraging behaviour

Baboon behaviour was observed under natural conditions using

focal follows (Altmann 1974) and recorded on handheld Motorola

MC35 (Libertyville, IL, USA) and Hewlett-Packard iPAQ

Personal Digital Assistants (Bracknell, Berkshire, UK) using a

customized spreadsheet in SpreadCE version 2.03 (Bye Design

Ltd 1999) and Cybertracker v3.237 (http://cybertracker.org),

respectively. Focal animals were selected in a stratified manner to

ensure even sampling from four to three-h time blocks (6–9 a.m.,

9 a.m.–12 p.m., 12–3 p.m. and 3–6 p.m.) across the field season,

and no animal was sampled more than once per day. Focal

follows lasted from twenty to thirty minutes (any <20 min were

discarded). At all times, we recorded the focal animal’s activity

(mainly foraging, resting, travelling or grooming) and the occur-

rence, partner identity and direction of any grooming or domi-

nance interactions. We also recorded the duration of grooming

bouts. During foraging, we recorded when the focal animal

entered and exited discrete food patches. Entry was defined as the

focal moving into and eating an item from the patch (to rule out

the possibility that they were simply passing by or through the

patch), and exit defined as the focal subsequently moving out of

the patch. Patches were defined as herbs, shrubs or trees with no

other conspecific plant within one metre (closer conspecifics,

which could potentially be reached by the forager without

moving, were treated as part of the same patch), and made up the

vast majority of the baboons’ diet. At each patch entry, we

recorded the local habitat (woodland or desert), the number of

other baboons already occupying the patch, the identity of any

adult occupants and three patch characteristics: the patch size,

type and food-item handling time. Patch size was scored on a

scale of 1–6 in the woodland and 1–4 in the desert and subse-

quently converted into an estimate of surface area (m2) using

patch sizes recorded during a one-off survey of 5693 woodland

patches and monthly phenological surveys of desert patches,

respectively. See below for details of the surveys; for details of the

surface area estimations, see Marshall et al. (2012). Patch type

was recorded by species for large trees and bushes in the wood-

land and as non-specified ‘herb/shrub’ for smaller woodland and

all desert patches. Food-item handling time was classed as high

(bark, pods and roots) or low (leaves, berries and flowers). Over-

all, we recorded 1481 focal hours (27 � 10 h, mean � SD, per

individual) containing 6175 patch visits (112 � 71 visits per indi-

vidual) for our analyses.

Temporal variation in habitat quality was estimated by the

monthly, habitat-specific, variation in both the mean number of

food items per patch and the patch density. These calculations

were based on monthly phenological surveys in which we esti-

mated the number of food items in randomly selected food

patches. In the woodland, we monitored a representative sample

of 110 patches selected from an earlier survey of 5693 woodland

patches (G. Cowlishaw, unpublished data); in the desert, we mon-

itored 73 food patches that fell within eight randomly placed

50 9 1 m transects. In both habitats, the monitored patches fell

within the study troops’ home ranges. Monthly estimates of patch

density were calculated as the mean number of patches contain-

ing food per km2. In the woodland, this was calculated by ran-

domly grouping the survey patches into 11 groups of 10 and

calculating the proportion of these patches containing food in

each group per month. Each group’s proportion was then used to

estimate a patch density (the number of the 5693 woodland

patches containing food divided by 9�9 km2, the extent of the

woodland habitat in the study area), and the mean of these

values taken as the woodland patch density, for any given

month. In the desert, monthly estimates of patch density were

calculated from the mean of the number of patches containing

food in each transect divided by 5 9 10�5 (transect area of

50 m2 = 5 9 10�5 km2).

Large-scale feeding experiments

Our foraging experiments were conducted in an open, flat and

sandy area in each troop’s home range. They involved a configu-

ration of five artificial food patches of loose maize kernels

arranged as shown in Fig. 1. The baboons visiting each patch

were recorded using Panasonic SDR-S15 (Kadoma Osaka, Japan)

video cameras on tripods, and so patches were trapezoidal to

maximize the use of their field of view. The five patches were a

combination of sizes, two measuring 20 m2 (patches B and C in

Fig. 1) and three at 80 m2 (patches A, D and E) for the small

troop, producing a total per-animal feeding area of 8�5 m2

(280 m2 divided by 33 animals). We kept the total per-animal

feeding area approximately constant by increasing these patch

sizes to 27 and 96 m2 for the large troop, producing a total per-

animal feeding area of 8�3 m2 (342 m2 divided by 41 animals).

The experiment was run in two 14-day periods, alternating

between troops. In the first period, patch food content (f in
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Fig. 1) was ‘low’ (11�4 � 0�3 g m�2, mean � SD), whilst inter-

patch distance (d) was ‘short’ (25 m) for the first 7 days and

‘long’ (50 m) for the second 7 days. In the second 14-day period,

patch food content was increased by 50% to ‘high’

(17�1 � 0�4 g m�2), whilst interpatch distance was ‘long’ for the

first 7 days and ‘short’ for the second 7 days. The experiments

were therefore run over 28 days in total, involving four different

food contents – interpatch distance combinations, for each troop.

The amount of food per patch was measured using a standard

level cup of maize kernels weighing 222 � 1 g (mean � SD,

n = 20).

Experimental food patches were marked out with large stones,

painted white, and were evenly scattered with maize kernels

before dawn each morning. Video cameras (one per patch, started

simultaneously when the first baboon was sighted) were used to

record all patch activity, and trained observers (one per patch)

recorded the identity of all individuals entering and exiting the

patch. These patch entry and exit data were subsequently tran-

scribed from the videos to create a dataset in which each row

represented one patch visit and included: the forager ID, the

patch ID, the PRT (s), the initial food density of the patch at the

start of the experiment (g m�2), the patch depletion (indexed by

the cumulative number of seconds any baboon had previously

occupied the patch), the forager’s satiation (indexed by the cumu-

lative number of seconds the focal baboon had foraged in any

patch that day) and the number and identity of all other individ-

uals in the patch. Video camera error on day 11 of the large

troop’s experiment meant that data from all patches were not

available on that day, resulting in unreliable depletion and satia-

tion estimates. Data from this day were therefore excluded, leav-

ing 8569 patch visits (159 � 137 per individual) in the final

dataset for analysis.

Individual forager characteristics

For each focal animal, we calculated its dominance rank, social

(grooming) capital and genetic relatedness to other animals in the

troop. Dominance hierarchies were calculated from all dominance

interactions recorded in focal follows and ad libitum (in both

cases, outside of the experimental periods; nlarge = 2391,

nsmall = 1931) using Matman 1�1�4 (Noldus Information Technol-

ogy 2003). Hierarchies in both troops were strongly linear

(Landau’s corrected linearity index: h’large = 0�71, h’small = 0�82,
P < 0�001 in both) and subsequently standardized to vary

between 0 (most subordinate) and 1 (most dominant) to control

for the difference in troop sizes. Social capital was calculated

using a grooming symmetry measure as there is growing evidence,

particularly in primates, that asymmetries in grooming interac-

tions can be traded for foraging tolerance (e.g. Fruteau et al.

2009). This symmetry measure was calculated as the proportion

of grooming time between two individuals that the focal animal

was the groomer, minus 0�5 (to make balanced relationships 0),

multiplied by the proportion of total focal time that the focal

and partner were observed grooming together during focal fol-

lows. Finally, dyadic relatedness (r) was estimated on the basis of

16 microsatellite loci using Wang’s triadic estimator (Wang 2007;

see Huchard et al. 2010 for further details). These data were then

used in the analysis of natural and experimental foraging behav-

iour to calculate: (i) each forager’s rank, mean social capital and

mean relatedness with other troop members, as individual charac-

teristics of the forager that were constant across patches; and (ii)

the mean rank difference, social capital and relatedness between

the focal forager and other patch occupants, which were specific

for each patch visit.

analysis

We formulated eight models describing the factors predicted to

influence patch-departure decisions, and so PRTs, by our three

types of patch-departure model (fixed rule, including pMVT,

Bayesian updating, and learning rules: see Introduction). We then

compared these models’ performances against each other as

explanations of the natural and experimental PRTs we observed.

These models comprised different combinations of three groups

of variables that described, respectively, the forager’s current for-

aging experience, c, its recent foraging experience, t, and the

broader habitat characteristics, h. Here, t is simply the time the

forager spent in the previous patch, whilst c and h are vectors of

variables that describe the current physical and social characteris-

tics of both the patch and the forager, in the case of c, and the

foraging habitat’s characteristics, in the case of h (see below for

details of the variables included in each vector).

The simplest patch-departure models assume that a forager’s

decision to leave a patch (and so the time it spends in it) is solely

based on a rule fixed by some aspect of their environment. To

explore this approach, our first three models predict PRT simply

from the forager’s current experience, PRT = f(c) (model 1),

recent experience, PRT = f(t) (m2) and habitat characteristics,

PRT = f(h) (m3), respectively. Such fixed rule models are often

considered to represent the ‘floor’ on foraging performance (e.g.

Olsson & Brown 2006), that is, the poorest of performances, so

these three models (m1–m3) are intended to act as a baseline

against which the more sophisticated models, that are likely to

achieve higher levels of performance, can be compared (see

below). The prescient version of the marginal value theorem

c

a

b

(a)

(b)

A

C

B

d

d

d

d

Patch food content = f g m–2  

d

Fig. 1. Schematic of the foraging experiment’s patch (a) layout

and (b) dimensions. For each troop patch food content, f, was

varied between 11�4 � 0�3 g m�2 (low, first 14-day period) and

17�1 � 0�4 g m�2 (high, second 14-day period) of loose dried

maize kernels. Interpatch distance (d) was varied within each 14-

day period. In the first period, it was set at 25 m (short) for the

starting 7 days and 50 m (long) for the remaining 7 days, and

vice versa for the second period. Patch size was constant within

troops. Large patches (A, D and E) were set at 80 m2 (a = 10 m,

b = 10 m, c = 6 m) for the small troop and 96 m2 (10, 12, 6) for

the large troop. Small patches (B and C) were set at 20 m2 (5, 5,

3) for the small troop and 27 m2 (6, 6, 3) for the large troop.
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(Charnov 1976), which assumes foragers are perfectly informed,

predicts a forager should leave a patch when their intake rate in

that patch falls below the habitat’s long-term average, or ‘mar-

ginal value’. In this case, our fourth model predicts PRT from a

combination of the forager’s current experience and the habitat

characteristics: PRT = f(c + h) (m4).

Bayesian updating and learning rule models suggest that forag-

ers use their recent experiences to inform their patch-departure

decisions. In learning models, foragers possess a valuation of

their environment, a moving average of their foraging experiences

up to the previous time step, and information about the foraging

conditions in the current time step. Foraging decisions in the cur-

rent time step are made by differentially weighting and combining

these two elements (environmental valuation and current infor-

mation) into a single value for the current patch or foraging tac-

tic (Kacelnik & Krebs 1985; Beauchamp 2000; Hamblin &

Giraldeau 2009). This suggests that, in this study, PRT should be

predicted by the previous foraging experience, representing the

forager’s valuation of the environment, and the current foraging

conditions, or PRT = f(c + t) (m5), approximately describing the

simplest learning rule, the linear operator (Kacelnik & Krebs

1985). Bayesian models, in contrast, suggest that foragers have a

perception of the environment’s distribution of food (rather than

a simple valuation), which they update using their recent experi-

ences, and then combine this information with current foraging

experiences to make their patch-departure decisions (see Dall

et al. 2005; McNamara, Green & Olsson 2006), thus suggesting:

PRT = f(c + t + h) (m6). Finally, there is some evidence that the

use of recent experiences may be contingent on habitat variabil-

ity, as increases in variability may decrease the reliability of

recent experiences in predicting the next experience, and so

informing decisions (Lima 1984; Valone 1992). Therefore, our

final two models develop m5 and m6 further by including an

interaction between the forager’s recent experience and habitat

variability:

PRT ¼ fðcþ tþ hSD þ t� hSDÞ ðm7Þ:

and

PRT ¼ fðcþ tþ hþ hSD þ t� hSDÞ ðm8Þ:

Here, hSD is a vector of variables describing the standard devia-

tion of the mean estimated habitat characteristics (see below for

details).

The variables included in vectors c, h and hSD were as follows.

In models predicting natural PRTs, the forager’s current experi-

ence, c, was described by the patch size, food species and han-

dling time. In models predicting experimental PRTs, c comprised

of the patch’s initial food density, estimated depletion and the

focal forager’s estimated satiation. Because the social environ-

ment can also influence a forager’s current foraging experience, c

also included (for both natural and experimental PRT models)

the focal forager’s rank, mean social capital and mean relatedness

to other troop members, and, on a patch-by-patch basis, their

mean rank difference, social capital and relatedness to other

patch occupants, plus the number of patch occupants present

(linear and quadratic terms). The variables describing the forag-

ing habitat characteristics, h, reflected the average patch quality

and density. In the natural PRT models, these were the monthly

habitat-specific estimates of both food items per patch and food

patches per km2; in the experimental PRT models, these were the

mean initial weight of food per patch (g) and interpatch distance

(m). Finally, in the natural PRT models, hSD described the stan-

dard deviations around the estimates of both the mean number

of food items per patch and patch density (hSD was not explored

in the experimental PRT models, because the initial patch quality

and density were fixed with zero variance).

Models 1 to 8 and a null model (containing no fixed effects)

were estimated using generalized linear mixed models for the natural

and experimental PRTs datasets. In both cases, all non-categorical

explanatory variables were standardized to have a mean of zero

and standard deviation of one. Natural models included focal

follow number nested within focal animal ID, nested within troop

as random effects. Experimental models included focal animal ID,

patch ID and experiment day cross-classified with each other and

nested within troop, as random effects. To account for overdisper-

sion in the PRT data, all models also included an observation-

level random effect and were fitted as Poisson lognormal mixed

effects models using a log link function (Elston et al. 2001) in the

package lmer in R (Bates, Maechler & Bolker 2011; R Develop-

ment Core Team 2011). We assessed these models’ performance

(nine models in the natural analyses, seven in the experimental

analyses) using Akaike’s model weights. These were calculated

from AIC values, because in all models n/k > 40, where n is the

number patch visits and k is the number of parameters in the max-

imal model (Burnham & Anderson 2002; Symonds & Moussalli

2011). The data and R code used in these analyses are available

from the Dryad repository (doi: 10.5061/dryad.3vt0s).

Results

The baboons visited food patches for a median of 30 s

(interquartile range = 12–79 s, n = 6175) in natural forag-

ing conditions and 52 s (16–157 s, n = 8569) in experi-

mental foraging conditions.

Natural PRTs were best explained by the model con-

taining factors predicted by the prescient marginal value

theorem (pMVT; Akaike’s model weight wi = 0�69,
Table 1) but also showed some support for the model con-

taining factors predicted by a Bayesian updating rule

(wi = 0�27). In contrast, experimental PRTs were best

explained by the model containing factors predicted by a

Bayesian updating rule above all other models (wi = 0�98,
Table 1). In both conditions, the influence of the foraging

habitat’s characteristics on PRTs was consistent with the

predictions of the pMVT (Table 2): the baboons spent less

time in food patches when the environment was character-

ized by higher quality patches at higher densities. In both

conditions, the model based on a Bayesian updating rule

also showed that baboons stayed longer in a patch when

they had spent more time in the previous patch. The effect

of this recent foraging experience was, however, relatively

weak, especially in the natural observations (Table 2).

Discussion

The use of a patch-departure decision rule consistent with

a Bayesian updating process was strongly supported by

the behaviour of the foragers on the experimental food

patches. In contrast, foraging behaviour under natural

conditions, whilst showing some support for the use of

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society, Journal of Animal Ecology
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Bayesian updating, showed greater support for a patch-

departure rule based on the pMVT. Furthermore, in both

environments, our Bayesian updating models also sug-

gested that the influence of a single previous foraging

experience was relatively weak. Our discussion first focuses

on why these differences in decision-making between the

two environments might occur and what this might sug-

gest about the animals’ abilities to efficiently exploit differ-

ent environments. We then consider what these results

reveal about how foragers use their recent experiences in

their patch-departure decisions and the implications of

these findings for the modelling of foraging behaviour.

It is widely appreciated that the collection and use of

information by animals is dependent on its associated costs

and benefits (Danchin et al. 2004; Dall et al. 2005). These

costs and benefits may be dependent on individual traits

(Koops & Abrahams 2003; Webster & Laland 2011;

Marshall et al. 2012), but also on the characteristics of the

surrounding environment and its resource distribution

(Templeton & Giraldeau 1995; Olsson & Brown 2006;

Webster & Laland 2008). Previous work has suggested that

differences in the weight a forager places on their most

recent experiences between habitats may be due to these

experiences providing more reliable indicators of future

foraging rewards when environments are either more pre-

dictable (Valone 1991; Devenport & Devenport 1994;

Fortin 2002; V�asquez, Grossi & Marquez 2006; Eliassen

et al. 2009) or less variable (Lima 1984; Valone 1992;

Biernaskie, Walker & Gegear 2009). These alternative

hypotheses may coincide, because less variable environ-

ments may also be more predictable – but not always,

because some patterns of variation, such as seasonal habi-

tat changes, can also be highly predictable (Eliassen et al.

2009). Our findings are able to distinguish between these

two hypotheses to some extent and support the former. If

environmental variability had influenced the baboons’ use

of recent experiences, we would have expected more sup-

port for our models which explicitly incorporated it (mod-

els 7 and 8). Instead, the baboons incorporated their most

recent experience into their patch-departure decisions to a

greater extent in the more predictable experimental forag-

ing environment (Table 2). This environment was likely to

have been more predictable as the relative quality and

position of each patch remained constant throughout, and

their absolute quality and position only changed once

(after 14 days) and three times (after 7,14, and 21 days),

respectively (see Fig. 1, and Methods). In contrast, natural

foraging environments, such as at Tsaobis, where food

Table 1. Model performance in explaining patch residency times, under natural and experimental conditions. Models in bold make up

the 95% confidence model set

Natural Experimental

No.

Patch-departure rule from

predictions of AIC DAIC wi No.

Patch-departure rule from

predictions of AIC DAIC wi

4 Prescient marginal value theorem 28342�16 0�00 0�69 6 Bayesian updating 48410�75 0�00 0�98
6 Bayesian updating 28344�06 1�90 0�27 5 Learning rule 48418�16 7�41 0�02
7 Learning rule dependent on

habitat variability

28348�33 6�18 0�03 4 Prescient marginal value

theorem

48429�22 18�47 0�00

8 Bayesian updating dependent on

habitat variability

28349�61 7�46 0�02 1 Fixed rule based on current

foraging condition

48436�57 25�82 0�00

1 Fixed rule based on current

foraging condition

28377�87 35�71 0�00 3 Fixed rule based on habitat’s

patch configuration

49161�69 750�94 0�00

5 Learning rule 28379�16 37�01 0�00 2 Fixed rule based on recent

foraging experience

49174�14 763�39 0�00

3 Fixed rule based on habitat’s patch

configuration

29323�18 981�02 0�00 Null 49200�07 789�32 0�00

2 Fixed rule based on recent foraging

experience

29521�79 1179�64 0�00

Null 29543�59 1201�43 0�00

AIC = Akaike’s information criterion, DAIC = difference between AIC score and lowest AIC score, wi = Akaike’s model weight

Table 2. The influence of previous foraging experience and foraging habitat characteristics (effect sizes, b � SE) on patch residency

times (PRTs) in the best models (95% confidence set, see Table 1) under natural and experimental conditions

Natural PRT models (model number) Experimental PRT models (model number)

Predictors

Prescient marginal

value theorem (m4)

Bayesian

updating (m6) Predictors

Bayesian

updating (m6)

Time in previous patch (s) 0�006 � 0�02 Time in previous patch (s) 0�08 � 0�02
Mean number of food items per patch �0�11 � 0�03 �0�11 � 0�03 Mean weight of food per patch (g) �0�56 � 0�15
Mean number of food patches per km2 �0�16 � 0�02 �0�16 � 0�03 Interpatch distance (m) 0�10 � 0�04
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patches consist of multiple plant species, with different

plant parts, whose phenology varies considerably across

the year (not only between species but also between indi-

viduals), are inherently much less predictable.

An ability to flexibly incorporate recent experience,

contingent on its reliability, into decision-making should

allow foragers to maximize the efficiency with which they

exploit different environments (Valone & Brown 1989;

Valone 1991; Devenport & Devenport 1994; Rodriguez-

Giron�es & V�asquez 1997; Koops & Abrahams 2003).

Such an ability appears to be possessed by the foragers in

this study. This flexibility may also be widely distributed

across a variety of taxa and not limited solely to cogni-

tively advanced animals such as baboons. A model by

Holmgren & Olsson (2000) demonstrated that incorporat-

ing recent experiences during Bayesian foraging was possi-

ble using a simple three-neurone network. Furthermore,

there is growing evidence, from a range of taxa, that

the incorporation of recent experiences into foragers’

decision-making can vary between environments (insects:

Biernaskie, Walker & Gegear 2009; birds: Alonso et al.

1995; Valone 1991; non-primate mammals: Devenport &

Devenport 1994; V�asquez, Grossi & Marquez 2006).

The model of forager behaviour predicted by Bayesian

updating was consistently supported over the model pre-

dicted by learning rules. This was true for both natural

and experimental environments. Both Bayesian updating

(Oaten 1977; Green 1984; McNamara, Green & Olsson

2006) and learning rules (Kacelnik & Krebs 1985;

Beauchamp 2000; Hamblin & Giraldeau 2009) have been

proposed as descriptions of how foragers incorporate past

experiences into their decision-making. Our results seem to

suggest that the former is more accurate in our system. This

difference in performance may be explained by the fact that

learning rules, particularly the linear operator rule that our

model represents, are often simpler than Bayesian updating

approaches and may be less responsive to environmental

variability (Groß et al. 2008; Eliassen et al. 2009). There is,

however, evidence that the best way for a forager to incor-

porate previous experiences into their foraging decisions

can be dependent on the underlying resource distribution

(Rodriguez-Giron�es & V�asquez 1997; Olsson & Brown

2006; Eliassen et al. 2009). Thus, although our study

favours the Bayesian updating approach, another study in

a different setting might not. Furthermore, in our study, we

built each of our candidate models from the general theo-

retical principles underlying each approach. However,

within each approach, different methods for incorporating

previous experiences have been proposed, for example, the

‘linear operator’ vs. ‘relative payoff sum’ methods for learn-

ing rules (Beauchamp 2000; Hamblin & Giraldeau 2009)

and the ‘current value’ vs. ‘potential value assessment’

methods for Bayesian updating (Olsson & Holmgren 1998;

van Gils et al. 2003). Another study, which was able to test

more specifically these different methods, might find a

narrower gap in performance between the learning and

Bayesian approaches.

The influence of the baboons’ most recent experience

on their patch-departure decisions, whilst generally

important, was still relatively small, suggesting that,

where foragers inform such decisions with their recent

experiences, they do so incrementally (Beauchamp 2000;

Amano et al. 2006; Biernaskie, Walker & Gegear 2009;

Hamblin & Giraldeau 2009). That is, it is not just the

previous foraging experience that is important but the

experiences before that, and so on. This is consistent with

the concept, common across models of imperfectly

informed foragers, that an individual’s estimate of the

environment’s distribution of resources (Bayesian updat-

ing) or value (learning rules) is an aggregate of their past

experiences, and that individuals are continually updating

this estimate with each subsequent experience (Kacelnik

& Krebs 1985; McNamara, Green & Olsson 2006). If, as

here, the influence of each of these experiences is low,

then as an increasing number of previous experiences are

remembered this perceived distribution or valuation will

increasingly approximate the true distribution (Koops &

Abrahams 2003), that is, the perfect knowledge assumed

by the pMVT (Charnov 1976). The predicted effects of

patch quality and density characteristics in our best sup-

ported models (Table 2) were consistent with the pMVT’s

prediction, suggesting that the baboons’ perception of

their environment did incorporate many past experiences

and was a good approximation of perfect knowledge.

Once again, there is reason to believe that this finding is

not specific to baboons, because (i) a weak effect of a

single recent experience on foraging decisions has been

shown many times previously (Beauchamp 2000; Amano

et al. 2006; Biernaskie, Walker & Gegear 2009; Hamblin

& Giraldeau 2009); and (ii) there is evidence from other

taxa that foragers can incorporate experiences over many

days into their decision-making (birds: Valone 1991; non-

primate mammals: Devenport & Devenport 1994;

V�asquez, Grossi & Marquez 2006). Furthermore, in theo-

retical comparisons, prescient (i.e. perfect knowledge) for-

agers perform best (Koops & Abrahams 2003; Olsson &

Brown 2006; Eliassen et al. 2009), and so it would seem

likely that there is widespread selection for the ability to

retain and use as many experiences as possible in forag-

ing decision-making.

The finding that the baboons’ perception of their envi-

ronment included many past experiences and approxi-

mated perfect knowledge has two implications. First, it

may provide an extra explanation for why the pMVT

model outperformed the Bayesian updating model in the

natural foraging conditions. Here, the baboons were

assigning very little weight to each foraging experience,

which, as we have argued, is expected in this more natu-

ral, unpredictable environment. The inclusion of the single

previous foraging experience variable in the Bayesian

updating model would therefore have provided very little

extra explanatory power over the pMVT model, where

this variable is absent, whilst being penalized 2 AIC

points for the inclusion of the extra parameter. The AIC
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score difference of 1�9 points between the two models sup-

ports this argument. Thus, the baboons may have been

using previous experiences in the natural foraging habitat,

but we were less able to detect this given the relatively

low weight assigned to each foraging experience. Indeed,

it is hard to imagine how the baboons would have

acquired sufficient knowledge of their environment to fol-

low the pMVT were it not for the gradual accumulation

of information through a process like Bayesian updating

or learning. It has also been noted that, where foragers

update their information about the environment in such a

gradual manner, distinguishing an updating from a non-

updating strategy may be difficult (Eliassen et al. 2009).

The second implication is more important. If a for-

ager’s perception of its environment approximates perfect

knowledge, then, in theory, its behaviour should also

approximate optimality (Koops & Abrahams 2003),

within the scope of its informational or physiological con-

straints (Fawcett, Hamblin & Giraldeau 2013). Our

empirical support for this theoretical prediction suggests

that the assumption of such knowledge by the pMVT

may not be so unrealistic. Indeed, the predictions of the

pMVT have received widespread qualitative support

(Nonacs 2001). Modelling any natural process requires

researchers to trade-off model accuracy and simplicity

(Evans 2012). The present study, and previous research,

indicates that models of patch-departure decisions that

consider how foragers incorporate past experiences into

these decisions will usually provide more realism and

accuracy than simpler models. However, our findings also

suggest that when attempting to predict foraging behav-

iour, the pMVT may provide a simpler approach without

sacrificing a great deal of accuracy.
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